@article{AIHPB_2003__39_1_95_0, author = {Vayatis, Nicolas}, title = {Exact rates in {Vapnik-Chervonenkis} bounds}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {95--119}, publisher = {Elsevier}, volume = {39}, number = {1}, year = {2003}, zbl = {1020.60010}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2003__39_1_95_0/} }
Vayatis, Nicolas. Exact rates in Vapnik-Chervonenkis bounds. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 1, pp. 95-119. http://www.numdam.org/item/AIHPB_2003__39_1_95_0/
[1] Probability inequalities for empirical processes and a law of the iterated logarithm, Ann. Probab. 4 (1984) 1041-1067. | MR | Zbl
,[2] R. Azencott, Communication for the fifty years of the Department of Mathematics at Brown University (USA), 1996.
[3] A sharp concentration inequality with applications, Random Structures and Algorithms 16 (3) (2000) 277-292. | MR | Zbl
, , ,[4] Large Deviations Techniques and Applications, Springer, 1998. | MR | Zbl
, ,[5] Bounds for the uniform deviation of empirical measures, J. Multivariate Anal. 12 (1982) 72-79. | MR | Zbl
,[6] A Probabilistic Theory of Pattern Recognition, Springer, 1996. | MR | Zbl
, , ,[7] A course on empirical processes, in: (Ed.), Ecole d'Eté de Probabilités de Saint-Flour XII - 1982, Lecture Notes in Mathematics, 1097, Springer-Verlag, 1982, pp. 1-142. | MR | Zbl
,[8] Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Ann. Math. Statist. 27 (1956) 642-669. | MR | Zbl
, , ,[9] On the central limit theorem for empirical processes, Ann. Probab. 12 (1984) 929-989. | MR | Zbl
, ,[10] Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension, J. Combin. Theory Series A 69 (1995) 217-232. | Zbl
,[11] Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl
,[12] On large deviations of the empirical d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961) 649-660. | MR | Zbl
,[13] Probability in Banach Spaces, Springer-Verlag, 1992. | MR | Zbl
, ,[14] Improved upper bounds for probabilities of uniform deviations, Statist. Probab. Lett. 25 (1995) 71-77. | MR | Zbl
,[15] Rates of convergence in the central limit theorem for empirical processes, Annales de l'Institut Henri Poincaré 22 (4) (1986) 381-423. | Numdam | MR | Zbl
,[16] The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann. Probab. 18 (1990) 1269-1283. | Zbl
,[17] Vapnik-Chervonenkis bounds for generalization, J. Phys. A: Math. Gen. 26 (1993) 2211-2223. | Zbl
, ,[18] Convergence of Stochastic Processes, Springer-Verlag, 1984. | MR | Zbl
,[19] Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics, 2, Institute of Mathematical Statistics, 1991. | MR | Zbl
,[20] E. Rio, Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Related Fields (2000), to appear. | MR | Zbl
[21] Sharper bounds for Gaussian and empirical processes, Ann. Probab. 22 (1) (1994) 28-76. | MR | Zbl
,[22] Weak Convergence and Empirical Processes, Springer, 1996. | MR | Zbl
, ,[23] Estimation of Dependencies on the Basis of Empirical Data, Springer, 1982.
,[24] The Nature of Statistical Learning Theory, Springer, 1995. | MR | Zbl
,[25] Statistical Learning Theory, Wiley-Interscience, 1998. | MR | Zbl
,[26] On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16 (1971) 264-280. | Zbl
, ,[27] Necessary and sufficient conditions for the uniform convergence of the means to their expectations, Theory Probab. Appl. 26 (1981) 532-555. | MR | Zbl
, ,[28] Measuring the VC-dimension of a learning machine, Neural Comput. 6 (1994) 851-876.
, , ,[29] N. Vayatis, Inégalités de Vapnik-Chervonenkis et mesures de complexité, Ph.D. thesis, Ecole Polytechnique, 2000, in English.
[30] Large deviations, moderate deviations and LIL for empirical processes, Ann. Probab. 22 (1) (1994) 17-27. | MR | Zbl
,