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ABSTRACT. – Vapnik–Chervonenkis bounds on rates of uniform convergence of empirical
means to their expectations have been continuously improved over the years since the precursory
work in [26]. The result obtained by Talagrand in 1994 [21] seems to provide the final word
as far as universal bounds are concerned. However, in the case where there are some additional
assumptions on the underlying probability distribution, the exponential rate of convergence can
be fairly improved. Alexander [1] and Massart [15] have found better exponential rates (similar
to those in Bennett–Bernstein inequalities) under the assumption of a control on the variance
of the empirical process. In this paper, the case of a particular distribution is considered for the
empirical process indexed by a family of sets, and we provide the exact exponential rate based
on large deviations theorems, as predicted by Azencott [2].
 2003 Éditions scientifiques et médicales Elsevier SAS
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RÉSUMÉ. – Les bornes de Vapnik–Chervonenkis sur les vitesses de convergence uniforme
des moyennes empiriques vers leurs espérances ont fait l’objet de nombreuses améliorations
depuis leur travail précurseur [26]. Le résultat obtenu par Talagrand en 1994 [21] semble
mettre un point final à la question des bornes universelles. Cependant, dans le cas d’hypothèses
supplémentaires sur la loi de probabilité sous-jacente, le taux exponentiel de la convergence peut
être amélioré. Alexander [1] et Massart [15] ont trouvé de meilleures vitesses exponentielles
(similaires à celles des inégalités de type Bennett–Bernstein) sous l’hypothèse d’un contrôle de
la variance du processus empirique. Dans cet article, nous étudions le cas d’une loi particulière
pour le processus empirique indexé par une famille d’ensembles et nous démontrons un résultat,
annoncé par Azencott [2], avec une borne présentant un taux exponentiel exact, conformément
aux théorèmes de grandes déviations.
 2003 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction and motivations

Let {Xi}i∈N be a sequence of independent random variables with distributionµ on a
Polish space(X ,B) whereB is the Borelσ -algebra. We denote byµn = (

∑n
i=1 δXi

)/n

the corresponding empirical measure. We consider a countable and totally bounded (for
the symmetric difference metric) family� of measurable sets ofX , with finite Vapnik–
Chervonenkis (VC) dimensionV .

We recall that a setT in a metric spaceT is totally boundedif, for every λ, there
exists a finite number of closed balls of radiusλ coveringB (a λ-coveringof B). The
VC dimensionof a family of sets� is defined as the largest integerk such that for some
setE of k points, any subset ofE is obtained as the intersection betweenE and some
setC of �.

In the present paper, we shall examine the uniform deviation over� of the empirical
measureµn from its expectationµ. Our main object of interest will be the following
probability tail

ρ(�,µ,n, ε)= Pr
{
sup
C∈�

∣∣µn(C)−µ(C)
∣∣> ε

}
. (1)

Such a probability tail is known to tend to zero as the sample sizen approaches infinity
under the assumption that the family� is reasonably small (this is the Glivenko–Cantelli
problem, see e.g. [7]). But a challenging issue is also the computation of the rates at
which this uniform convergence is achieved. We insist on the fact that finding sharp
rates is not mere sophistication and it has a tremendous impact on the applications
in the field of machine learning. Indeed, VC bounds are closely related to the error
bounds on generalization of learning algorithms like neural networks. Such theoretical
results actually provide an important tool in the design of learning structures and the
prediction of their performance (see [25]). Pioneering work on is due to Vapnik and
Chervonenkis [26,27] who extended classical results of Kiefer [12], and Dvoretzsky,
Kiefer and Wolfowitz [8] (see also [15] for a consistent review). Since then, many
techniques have been developped in empirical process theory in order to improve these
Vapnik–Chervonenkis (VC) inequalities. The general structure for VC bounds is the
following: there is anM such that, fornε2 >M , we have

ρ(�,µ,n, ε)�K
(
nε2)τ exp

{−nφ(ε)}, (2)

whereK is a multiplicative constant,τ is the power of the polynomial term which
reflects thecapacityof the family� (in some way, it is related to a complexity index,
e.g. the VC dimension of the family�), andφ(ε) is the exponential rate of convergence.

In order to discuss previous results and find out what the “best”K , τ andφ(ε) are,
we have to point out that there are various assumptions that can be made on thea priori
knowledge that we have on the underlying distributionµ:

(1) Universal (or distribution-free) case (HVT) – it is assumed thatµ can beany
probability distribution onM1(X ).

(2) Control-of-the-variance assumption (ALMA) – there exists a constantσ 2 such
that

sup
C∈�

µ(C)
(
1−µ(C)

)
� σ 2 <

1

4
. (3)
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(3) Distribution-dependent case (DD) – we assume that we know exactly the
particular distributionµ that underlies the data.

Note that these three types of assumptions correspond to different exponential rates
like in the classical case of the deviation of the empirical mean from its expected value.
Assumption HVT2 leads to Hoeffding’s exponential rate, Assumption ALMA3 gives
Bennett–Bernstein rates, and Assumption DD corresponds to the exact rate of Chernoff’s
bound (as confirmed by large deviations theory). We insist on the fact thatthe issue of
providing sharp exponential rates is prior to the question of getting a “good” polynomial
factor.

The Assumption HVT has been considered by Vapnik and Chervonenkis [26], Vapnik
[23], Devroye [5], Pollard [18], Parrondo and van den Broek [17], Lugosi [14], Talagrand
[21]. The best exponential rate in that case corresponds to Hoeffding’s inequality where
φ(ε) = 2ε2 (first obtained by Devroye in [5]), and the best polynomial power of
τ = V −1/2 was obtained, at the cost of significant breakthroughs in empirical processes
theory, by Talagrand in [21].

The case of Assumption ALMA has been mainly carried out by Alexander [1] and
Massart [15]. Massart establishes a bound with

φ(ε)= ε2

2(σ 2+ σ√
n
(3σ + ε

√
n))

(4)

andτ = 3V . Alexander proves a similar result with general exponential rate involving
the variance of the empirical process but with a huge capacity term (τ = 212V !). There
are some hints and proof sketches on how to improve these results regarding to the
polynomial factor which have been provided by Talagrand in [21].

The purpose of this paper is to investigate the case where Assumption DD is adopted.
As pointed out by Azencott [2], the exponential rate which is expected is the one of
Sanov’s theorem (see e.g. [4]) involving the Kullback information. Indeed, this result
has been proved in a large deviations setting (asymptotically on a logarithmic scale) by
Wu in [30] for the functional case. We propose to make an accurate statement of the
bound in the case of empirical processes indexed by sets and to prove a non-asymptotic
result reflecting the general structure of VC bounds.

Indeed, this investigation was motivated by our empirical study on VC bounds
and VC dimension in [29]. In this experimental work, our goal was to test the very
structure of VC bounds for particular distributions through computer simulations. Our
idea (following the general, but incomplete, approach of [28]) was basically to estimate
the probability tailρ(�,µ,n, ε), and then fit the results with the explicit formula given in
the bound (2). It is worth noticing that if one has a precise knowledge of the exponential
rateφ(ε) (this indeed is the most crucial issue for the success of these experiments!), it
is then possible to estimate precisely both the complexity indexτ and the multiplicative
constantK (see [29] for details and examples). This methodology provides an interesting
machinery for testing conjectures about the quantities involved in VC bounds.

2 HVT stands for Hoeffding–Vapnik–Talagrand.
3 ALMA stands for ALexander–MAssart.
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Remark1.1. – The distribution-dependent VC bounds which are presented in statis-
tical learning literature, in [24] and [25] for instance, refer to different complexity con-
cepts (VC entropy or annealed entropy), but not to the exponential rate.

Remark1.2. – Except in some very particular cases (see [16]), the multiplicative
constants in such bounds are very difficult to control. In this work, we are not concerned
about these constants. However, we have proposed in [29] a simulation protocol which
leads to sharp empirical estimations of the constantK .

Notations. We need to introduce theKullback information functionfor Bernoulli
distributions which we denote byH .

∀q,p ∈ (0,1), H(q,p)= q ln
(
q

p

)
+ (1− q) ln

(
1− q

1− p

)
. (5)

We recall the standardChernoff boundon large deviations.

∀C ∈ �, Pr
{
µn(C)−µ(C) > ε

}
� exp

{−nH(µ(C)+ ε,µ(C))
}
, (6)

∀C ∈ �, Pr
{
µ(C)−µn(C) > ε

}
� exp

{−nH(µ(C)− ε,µ(C))
}
. (7)

As we consider the two-sided probability tail, we will have to consider the “worst”
of these two exponential rates, as being theexact exponential rate. We shall denote it
by �q(ε).

∀q ∈ (ε,1− ε), �q(ε)=H(q + ε, q)∧H(q − ε, q). (8)

Another important concept is the one ofcritical valueof the family�. We introduce
the rangeJ of values of the mass of the elementsC of � with respect to the
distributionµ.

J = {q = µ(C): C ∈ �}. (9)

DEFINITION 1.3. – We define thecritical values pc of � with respect to the
distributionµ as the values which minimize the functionq→�q(ε) over the setJ .

The reader should be warned that the constantK is used repeatedly, but, for notational
convenience, its value is not fixed. This constant depends indeed on� (through its VC
dimensionV ) but we have not captured, in the present work, the type of dependency
which is involved.4

2. Main results

In this work, we have investigated the two general proof methods which have been
developed in proving rates of convergence for empirical processes (cf. [18,6], for
methodological inventories). The purpose of both methods is to make the supremum
tractable. Theapproximation methodallows to reduce the family� to a finite
approximating family. Thecombinatorial methodis based on symmetrization argument
allowing to consider the trace of� on a fixed sample.

4 However, our empirical study in [29] provides some insights on this issue.
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Our main theorem follows the line of proof of the original Vapnik–Chervonenkis paper
[26] and the improved version provided by Devroye [5]. This result indicates the exact
exponential rate for empirical processes indexed by classes of sets. In order to keep
track of this correct rate, some sophistications were needed and we used abusively some
techniques from the work of Talagrand in [21].

THEOREM 2.1. – Given ε > 0, let p be a critical value of� with respect to the
distributionµ. We have

p := p(ε)= argmin
q∈J

�q(ε).

There exists some constantK such that, for anyn, andε small enough,

Pr
{

sup
C∈�

∣∣µn(C)−µ(C)
∣∣> ε

}
�Kn3V+21exp

{−n�p(ε)
}
. (10)

Remark2.2. – In this result, the polynomial factor is in “n” instead of the typical
“nε2” (we recall thatM = ε

√
n is the “natural” variable in the study of such probability

tails). This means actually that the bound is trivial in the case ofε being of the order
1/
√
n. The VC bound obtained in the theorem becomes active forε at least of the order√

(logn)/n, and, in particular, forε fixed.

Remark2.3. – By slightly modifying the end of the proof, we can get a polynomial
factor innε2, but we come up with a condition likenε3 large enough which seems to be
a weaker result. We thus have, with the same assumptions as in the theorem, that there
exists some constantsK andM such that, forε small enough, and fornε3 >M ,

Pr
{

sup
C∈�

∣∣µn(C)−µ(C)
∣∣> ε

}
�K

(
nε2)3V+21

exp
{−n�p(ε)

}
. (11)

Remark2.4. – A similar result holds for the one-sided probability tail

ρ+(�,µ,n, ε)= Pr
{
sup
C∈�
(
µn(C)−µ(C)

)
> ε

}
, (12)

except that, in this case, one shall simply have�p(ε)=H(p+ ε,p).

We then formulate a simple characterization of the critical values of� (it is based on
a detailed study of the exponential rate�q(ε) presented in Section 3).

PROPOSITION 2.5. – Let J be the range of the values of the massµ(C) of the
elements of�. We assume that there is a neighborhoodV of 1

2 such thatV ∩ J = ∅.
Then, there is anε0 such that forε < ε0, thecritical valuespc of � with respect to the
distributionµ are the closest value to1/2 from the setJ . In other words, we have, ifε
is small enough,

pc := argmin
q∈J

�q(ε)= argmin
q∈J

∣∣∣∣q − 1

2

∣∣∣∣. (13)

Remark2.6. – Note that the assumption stated in the proposition can be rephrased by
saying that the rangeJ does not contain the value12. If we drop this assumption, then
we have thatpc ∈ ((1− ε)/2,1/2)∪ (1/2, (1+ ε)/2).
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Remark2.7. – In any case, because of the symmetry of the functionq → �q(ε)

with respect to the position 1/2, there are at most two critical values for� given the
distributionµ. Indeed, ifp is a critical value, then 1− p is the other possible critical
value.

The following sections are dedicated to the proofs of these results. In Section 3,
we provide the analysis of the functionq → �q(ε). The approximation method is
investigated through Section 4. We establish a partial result (cf. Proposition 4.1) which
turns out to be useful in the sequel. The proof of Theorem 2.1, based on the combinatorial
method, is eventually presented in Section 5.

3. Proof of Proposition 2.5

We notice that the functionsx→ H(x + ε, x) andx→ H(x − ε, x) are symmetric
with respect tox = 1

2. We have indeed,

∀x, H(x + ε, x)=H(1− x − ε,1− x).

Thus, it suffices to consider the variations ofgε defined bygε(x) = H(x + ε, x) (see
Fig. 1). A quick study of this function shows that its second derivative is positive as soon
asε <

√
3/2. Hence, this function is convex. We notea = inf J andb= supJ . We want

to derive the value of infx∈J H(x + ε, x).
• Case(1) a > 1/2.

We notice thatg′ε(1/2) � 0 if ε ∈ (0;1/2), hencegε is increasing onJ (recall that
this function is convex), and we have

inf
x∈J H(x + ε, x)=H(a + ε, a).

Similarly, we have

inf
x∈J H(x − ε, x)=H(a − ε, a).

Hence,

inf
x∈J
{
H(x + ε, x) ∧H(x − ε, x)

}=H(a+ ε, a)∧H(a − ε, a).

• Case(2) b < 1/2.
We notice thatg′ε((1− ε)/2) < 0 if ε > 0. Thusgε decreases onJ if we consider
ε < 1− 2b. We have

inf
x∈J H(x + ε, x)=H(b+ ε, b).

Thus,

inf
x∈J
{
H(x + ε, x)∧H(x − ε, x)

}=H(b+ ε, b)∧H(b− ε, b).
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Fig. 1. Plot of the functionq → �q(ε) for ε = 0.15. The branches (a) and (b) represent the
functionq→H(q + ε, q), while (c) and (d) represent the functionq→H(q − ε, q). The line
indexed by (e) corresponds to the universal case (HVT) where the exponential rate is 2ε2.

• Case(3) a < 1/2< b.
We writeJ = J1∪ J2, where

J1= J ∩ [0,1/2[, and J2= J ∩ [1/2,1].
We noteu = supJ1 and v = inf J2. Since we have assumed that there exists a
neighborhoodV of 1

2 such thatV ∩ J = ∅, we haveu < 1/2. Thus, we have, from
Case (2), that, ifε < 1− 2u,

inf
x∈J1

H(x + ε, x)=H(u+ ε, u),

and, from Case (1)

inf
x∈J2

H(x + ε, x)=H(v+ ε, v)

to obtain, eventually,

inf
x∈J H(x + ε, x)=H(u+ ε, u)∧H(v+ ε, v).

We also have

inf
x∈J H(x − ε, x)=H(u− ε, u)∧H(v− ε, v).
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Assume thatu is the closest value to 1/2. Then, since 1/2< 1− u < v, we have

H(u− ε, u)=H(1− u+ ε,1− u) < H(v+ ε, v),

and, similarly,

H(u+ ε, u)=H(1− u− ε,1− u) < H(v− ε, v).

Thus, if we assume thatu= argminq: q=µ(C),C∈� |q − 1
2|, we then have

inf
x∈J
{
H(x + ε, x)∧H(x − ε, x)

}=H(u+ ε, u)∧H(u− ε, u).

The same argument in the case wherev = argminq: q=µ(C),C∈� |q − 1
2| leads to

inf
x∈J
{
H(x + ε, x) ∧H(x − ε, x)

}=H(v+ ε, v)∧H(v− ε, v).

Therefore, we have proved that, givenJ , then, forε small enough, we have

p := argmin
q: q=µ(C),C∈�

(
H(q + ε, q) ∧H(q − ε, q)

)= argmin
q: q=µ(C),C∈�

∣∣∣∣q − 1

2

∣∣∣∣.
Remark3.1. – Note that the closerp is to 1/2, the smallerε has to be.

4. Approximation method

The bound we have obtained through the approximation method (Proposition 4.1) is
simply a preliminary step since it involves a disturbing corrective term. However, this
step turns out to play a key role in the proof of our main theorem (Theorem 2.1).

PROPOSITION 4.1. – For everyβ > 0, there existM(β,p,V ) and ε0(β,p,V ) > 0
such that ifε < ε0(β,p,V ) andnε2 >M(β,p,V ), we have

Pr
{

sup
C∈�

∣∣µn(C)−µ(C)
∣∣> ε

}
� exp

{−n (1− β)�p(ε)
}
. (14)

Remark4.2. – We mention that the constantM is of the orderO( 1
β4 exp 1

β2 ).

We now turn to the proof of this proposition.

4.1. Proof of Proposition 4.1

We define aλ-net�λ which is a finite approximation of� such that, for anyC ∈ �,
there is aC∗ ∈ �λ such thatµ(C)C∗) < λ. The elementC∗ is called theprojection
of C on�λ. We denote byJλ = {q = µ(C): C ∈ �λ}. The cardinality of�λ is denoted
by N (λ). We shall consider thatλ = 1

nε2 . We denote byGn = µn − µ the centered
empirical process. We then have
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Pr
{
sup
C∈�

∣∣Gn(C)
∣∣> ε

}
� Pr

{
sup
C∈�

∣∣Gn(C
∗)
∣∣> ε1

}
+Pr

{
sup
C∈�

∣∣Gn(C)−Gn(C
∗)
∣∣> ε2

}
(15)

whereε1+ ε2= ε.
The first term corresponds to the same problem as the initial one but for a finite family

of sets. It is easy to control it with a straightforward application of Chernoff’s inequality.
Hence, we have, for someβ,

Pr
{
sup
C∈�

∣∣Gn(C
∗)
∣∣> ε1

}=Pr
{

sup
C∈�λ

∣∣Gn(C)
∣∣> ε1

}
� 2N (λ)exp

{−n inf
q∈Jλ

�q(ε1)
}

(16)

� 2N (λ)exp
{−n inf

q∈J �q(ε1)
}

(17)

� 2N (λ)exp
{−n�p(ε1)

}
(18)

� 2N (λ)exp
{−n(1− β)�p(ε)

}
. (19)

Inequality (16) comes from the union-of-events bound and an application of the
Chernoff bound (see the inequalities (6) and (7) in Section 1). The sum is bounded by the
worst exponential rate over the range of possible values ofµ(C). Inequality (17) simply
uses the fact thatJλ ⊂ J , and inequality (18) is a notational transformation thanks to the
definition of the critical valuep (see Definition 1.3). We now explain inequality (19).
We note that (see Fig. 1), forp fixed, we have

H(p+ ε,p) < H(p− ε,p), for p <
1

2
, and

H(p+ ε,p) > H(p− ε,p), for p >
1

2
.

Thus, we have that either�p(ε)=H(p+ ε,p), either�p(ε)=H(p− ε,p) when the
parameterp is fixed. Hence, the function�p is a convex function ofε. We can write that

�p(ε1)��p(ε)+ (ε1− ε)�′p(ε1).

As we want to obtain the correct exponential rate�p(ε) with possibly some corrective
term, we setβ such as�p(ε1) = (1− β)�p(ε). We also setε1 = (1− θ)ε. Then, we
have thatβ andθ are related through

θ � β

(
�p(ε)

ε�′p(ε)

)
,

and the factor between the two is a bounded non-zero quantity. We can keep in mind that
θ � β/2.

The difficult part of the work is to control efficiently the second term which is due to
the approximation. We have

Pr
{
sup
C∈�

∣∣Gn(C)−Gn(C
∗)
∣∣> ε2

}
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� N (λ) max
C∗∈�λ

Pr
{

sup
C∈B(C∗,λ)

∣∣Gn(C)−Gn(C
∗)
∣∣> ε2

}
. (20)

The essential part of the proof is dedicated to the control of the localized empirical
process. Indeed we need to obtain a tractable exponential bound on the quantity

Pr
{

sup
C∈B(C∗,λ)

∣∣Gn(C)−Gn(C
∗)
∣∣> ε2

}
. (21)

The classical way to deal with suprema in empirical processes theory is to use the
chainingtrick (cf. [19,22,13]). However, this cannot be done straightforwardly since the
process involved here does not satisfy a subgaussian inequality. The argument developed
here is due to Talagrand in [21] and it can also be found in [22]. In the following
Section 4.2, we shall prove

PROPOSITION 4.3. – With λ= 1/(nε2), and the sameβ as before, we have, fornε2

larger than a constantM(β),

Pr
{

sup
C∈B(C∗,λ)

∣∣Gn(C)−Gn(C
∗)
∣∣> ε2

}
� 16exp

{−n(1− β)�p(ε)
}
. (22)

We haveM(β)=O( 1
β4 exp 1

β2 ).

Combining inequalities (19) and (22), we finally obtain a global bound onρ(�,µ,n,

ε).

Pr
{
sup
C∈�

∣∣Gn(C)
∣∣> ε

}
� 18N (λ)exp

{−n(1− β)�p(ε)
}
. (23)

We conclude the proof of this proposition by using the relationship between metric
entropy and the VC dimension. Indeed, we recall from [10] and [22] that there exists a
constantK such that

N (λ)�K

(
1

λ

)V

. (24)

We eventually setλ being equal to 1/(nε2). We also consider that

18K
(
nε2)V � exp

{
nβ�p(ε)

}
(25)

as soon asnε2=O( 1
β

log 1
β
).

Then, at the cost of modifyingβ up to a multiplicative constant, we obtain
Proposition 4.1.

We now turn to the proof of Proposition 4.3.

4.2. Proof of Proposition 4.3

4.2.1. Symmetrization
Consider the centered stochastic process{Zn(C)}C∈B(C∗,λ) where we have set

Zn(C) = Gn(C) − Gn(C
∗) (we suppose here thatC∗ is fixed). We introduce the

independent Rademacher random variablesε1, . . . , εn (εi takes values 1 and−1 with



N. VAYATIS / Ann. I. H. Poincaré – PR 39 (2003) 95–119 105

probability 1/2 each). Thanks to a result from [21] (Lemma 3.1, p. 44 – original result
due to Giné and Zinn [9], Lemma 2.7, pp. 936–937), we have, fornε2

2 � 8 (here, the
measurable functionsf are of the form(1C − 1C∗)),

Pr
{

sup
C∈B(C∗,λ)

∣∣Zn(C)
∣∣> ε2

}
� 4Pr

{
sup

C∈B(C∗,λ)

∣∣∣∣∣1n
n∑

i=1

εi(1C − 1C∗)(Xi)

∣∣∣∣∣> ε2

4

}
, (26)

and, since the random variables

sup
C∈B(C∗,λ)

∣∣∣∣∣1n
n∑

i=1

εi(1C − 1C∗)(Xi)

∣∣∣∣∣ and sup
C∈B(C∗,λ)

∣∣∣∣∣1n
n∑

i=1

εi1C)C∗(Xi)

∣∣∣∣∣
have the same distribution, we have

Pr
{

sup
C∈B(C∗,λ)

∣∣Zn(C)
∣∣> ε2

}
� 4Pr

{
sup

C∈B(C∗,λ)

∣∣∣∣∣1n
n∑

i=1

εi1C)C∗(Xi)

∣∣∣∣∣> ε2

4

}
. (27)

4.2.2. Conditioning and decomposition using the median
We set some notations

Xn= 1

n

n∑
i=1

εi1C)C∗(xi), (28)

‖Xn‖= sup
C∈B(C∗,λ)

|Xn|, (29)

σ 2= sup
C∈B(C∗,λ)

(
1

n2

n∑
i=1

1C)C∗(Xi)

)
(30)

and PrX, EX (respectively Prε, Eε) are the conditional distributions and expectations
given(εi) (respectively(xi)).

We attempt to control the the following probability tail.

Pr

{
sup

C∈B(C∗,λ)

∣∣∣∣∣1n
n∑

i=1

εi1C)C∗(Xi)

∣∣∣∣∣> ε2

4

}
=Pr

{
‖Xn‖> ε2

4

}
. (31)

We fix Xi = xi for i = 1, . . . , n and we consider the conditional probability of the
previous tail. We observe that this is the tail of the supremum norm over the set of
indicator functions{1C)C∗; C ∈ �} of a Rademacher process over the Banach spaceR

d

of the formX =∑n
i=1 εixi which is known to be subgaussian. This fact is guaranteed

by a concentration inequality from [13] on the deviations from the median. This result
involves the medianM(Xn) of the process (conditionally on the(xi)’s) which is defined
by the following inequalities

Prε
{‖X‖>MX

}
� 1

2
� Prε

{‖X‖�MX

}
. (32)
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Then, using the right inequality, we obtain with the help of Markov inequality

MX � 2Eε‖X‖. (33)

According to this concentration result from [13] (Inequality 4.10, p. 100), we have
that

∀t > 0, Prε
{‖Xn‖ −M(Xn) > t

}
� 2e−t

2/8n2σ2
.

We can then write (computation follows essentially [21] recomposed in [22]), for all
u > 0,

Pr
{
‖Xn‖> ε2

4

}
=EX Prε

{
‖Xn‖> ε2

4

}
(34)

� EX Prε

{
‖Xn‖ −M(Xn) >

ε2

8

}
+PrX

{
M(Xn) >

ε2

8

}
(35)

� EX

(
2exp

{
− ε2

2

512σ 2

})
+PrX

{
Eε‖Xn‖> ε2

16

}
(36)

� 2exp
{
− ε2

2

512u

}
+PrX

{
σ 2 > u

}+PrX

{
Eε‖Xn‖> ε2

16

}
. (37)

We adopt the following notation for this bound,

H = 2exp
{
− ε2

2

512u

}
+PrX

{
σ 2 > u

}+PrX

{
Eε‖Xn‖> ε2

16

}
=D+ F +G. (38)

4.2.3. Estimating the terms F and G
Now we use the following result from [22] (Lemma A.4.3, p. 455) in order to bound

F andG in the previous inequality. Indeed, ifSn is a permutation-symmetric map such
that

(i) Sn(x) � Sn+m(x, y),

(ii) Sn+m(x, y) � Sn(x)+ Sm(y).

Then, we have, for any strictly positivet , and for any integern,

Pr{Sn > t}� exp
(
− t

2
log
(

t

4(2ESn + 1)

))
. (39)

Remark4.4. – We have slightly modified the original result by keeping the term
4(2ESn + 1) in the denominator under the logarithm rather than 12(ESn ∨ 1) which
is given in [22].

We now apply this result to get the following upper bounds.
• On the one hand, by applying the lemma withSn(X)= n2σ 2, andt := n2u, we get

F =PrX
{
σ 2 > u

}
� exp

(
−1

2
n2u log

(
nu

4(2nEσ 2+ 1
n
)

))
. (40)
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• On the other hand, by settingSn(X)= nEε‖Xn‖ andt := nε2/16, we have5

G= PrX

{
Eε‖Xn‖> ε2

16

}
� exp

(
−1

2
· nε2

16
log
(

ε2

64(2E‖Xn‖ + 1
n
)

))
. (41)

Now we appeal to some result from [21] (Corollary 3.2) to boundEσ 2. Applying this
inequality for indicator functions of the formf = 1C)C∗ (we haveEf = µ(C)C∗)), we
obtain

nEσ 2 � λ+ 2E‖Xn‖. (42)

Thus, we have

4
(

2nEσ 2+ 1

n

)
� 4

(
2λ+ 4E‖Xn‖ + 1

n

)
, (43)

and we can use the following bound forF .

PrX
{
σ 2 > u

}
� exp

(
−1

2
n2u log

(
nu

8(λ+ 2E‖Xn‖ + 1
n
)

))
. (44)

Letm1, m2 be such that

m1 � λ+ 2E‖Xn‖+ 1

n
, (45)

m2 � 2E‖Xn‖ + 1

n
. (46)

We have obtained the following control of the tail

L= 2exp
{
− ε2

2

512u

}
+ exp

{
−1

2
n2u log

(
nu

8m1

)}
+exp

{
−1

2

nε2

16
log
(

ε2

64m2

)}
. (47)

4.2.4. Bounding E‖Xn‖
To get an estimate form1, m2, we need to computeE‖Xn‖. We recall the technical

result obtained by Talagrand [21] (Proposition 6.2). If we set

λ= sup
C∈B(C∗,λ)

µ(C)C∗),

then

E‖Xn‖� K√
n

((
λ+K2 · v

n
log

U

4λ

)
v log

U

4λ

)1/2

, (48)

whereK , U , andv are some constants.
As we have setλ= 1/(nε2), we get

E‖Xn‖� K

nε
log
(
nε2). (49)

5 Note thatESn = nEXEε‖Xn‖ = nE‖Xn‖.
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Hence, we can take

m1= K

nε2
log
(
nε2), (50)

m2= K

nε
log
(
nε2). (51)

4.2.5. Optimization
Now, we adjust the various parameters in such a way that each exponential term in the

bound becomes smaller than exp{−n(1− β)�p(ε)}. We set

(θε)2

512u
� n(1− β)�p(ε), (52)

n2u

2
log
(

nu

64m1

)
� n(1− β)�p(ε), (53)

nθε

32
log
(

θε

64m2

)
� n(1− β)�p(ε). (54)

From the first two conditions (52) and (53), we can get a single inequality and there
is no need to provide the proper choice foru, but only guarantee that such a choice is
possible. We have

β2

2048(1− β)

ε2

�p(ε)
� nu, (55)

log
(

nu

64K

nε2

log(nε2)

)
� 2(1− β)�p(ε). (56)

Using the fact that the term ε2

�p(ε)
can assumed to be constant (possibly depending

onp) and taking into account the fact that we have, up to a constant,

x �A logA ⇒ x

logx
�A,

we deduce a condition of the form

nε2 �M1(β,p,V )= K

β4
exp
{
C

β2

}
,

whereK andC are some constants.
Now the third condition (54) leads with a similar argument to

nε2 �M2(β,p,V )= K ′

β2
exp
{
C ′

β

}
,

with K ′, C ′ being some constants.
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5. Combinatorial method

We now turn to the proof of Theorem 2.1. We introduce a new notation for the
empirical mean which makes a more explicit reference to the sample,

µ
(
C,Un

1

)= 1

n

n∑
i=1

1C(Ui). (57)

We introduce a “ghost” i.i.d. sampleY1, . . . , Ym from the same probability distribu-
tion µ, and we use the symmetrization lemma due to Devroye [5] which states that, for
anyε > 0,m� 1 and 0< α < 1, we have

Pr
{

sup
C∈�

∣∣µ(C,Xn
1

)−µ(C)
∣∣> ε

}
�
(

1− 1

4mα2ε2

)−1

Pr
{

sup
C∈�

∣∣µ(C,Xn
1

)−µ
(
C,Ym

1

)∣∣> (1− α)ε
}
. (58)

We setε∗ = (1− α)ε and

τ(n,m, ε,µ)= Pr
{
sup
C∈�

∣∣µ(C,Xn
1

)−µ
(
C,Ym

1

)∣∣> ε∗
}
. (59)

With these notations, we rephrase the previous lemma in the following form by

ρ(�,µ,n, ε)�
(

1− 1

4mα2ε2

)−1

τ(n,m, ε,µ). (60)

We introduce the notation:N = n+m. Now, we work on the symmetrized probability
tail.

τ(n,m, ε,µ)=
∫

1{supC∈� |µ(C,Xn
1)−µ(C,Ym

1 )|>ε∗} dµ⊗N
(
Xn

1 × Ym
1

)
(61)

=
∫

sup
C∈�

1{|µ(C,Xn
1)−µ(C,Ym

1 )|>ε∗} dµ⊗N
(
Xn

1 × Ym
1

)
. (62)

Following the line of proof of [26], we considerT = {Ti}i=1,...,N ! the set of all
permutations of the setX1, . . . ,Xn,Y1, . . . , Ym and we notice that there is a finite number
N (�,X1, . . . ,Xn,Y1, . . . , Ym) of equivalence classes of sets in� achieving different
values for the quantity|µ(C,Xn

1) − µ(C,Ym
1 )|. Hence, it is possible to replace the

supremum over� by a supremum over an approximation�∗ of the family�, and�∗
has a finite number of elements equal toN (�,X1, . . . ,Xn,Y1, . . . , Ym). Thus, we can
write

τ(n,m, ε,µ)

�
∫ ∑

C∗∈�∗
1

N !
N !∑
i=1

1{|µ(C∗,TiXn
1)−µ(C∗,TiYm

1 )|>ε∗} dµ⊗N
(
Xn

1 × Ym
1

)
(63)

=
∫ ∑

C∗∈�∗
Pr
{∣∣µ(C∗,X′n1)−µ

(
C∗, Y ′m1

)∣∣> ε∗
}
dµ⊗N

(
Xn

1 × Ym
1

)
, (64)
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whereX′n1 × Y ′m1 is obtained by a sampling without replacement draw fromXn
1 × Ym

1 .
We bound each term of the sum separately thanks to the following proposition. Thus, we
will consider that the elementC∗ is fixed.

PROPOSITION 5.1. –LetXn
1 × Ym

1 be a fixed sample. For a fixedC∗, we set

r = r(C∗)=
n∑

l=1

1C∗(Xl)+
m∑
l=1

1C∗(Yl). (65)

We denote byX′n1 × Y ′m1 the random variables obtained through sampling without
replacement from the original sampleXn

1 × Ym
1 . We have

Pr
{∣∣µ(C∗,X′n1)−µ

(
C∗, Y ′m1

)∣∣> ε∗ |Xn
1 × Ym

1

}
� 2(n+m+ 1)7 exp

{
−n� r

n+m

((
m

n+m

)
ε∗
)}

. (66)

Proof. –We notice that the actual distribution of the random variabler is binomial
with parameters(N,µ(C∗)). Now we consider that the sampleXn

1×Ym
1 is fixed, so that

all the probabilities involved in this proof are conditional probabilities given the sample.
Suppose thatµ(C∗,X′n1)= k

n
, then we haveµ(C∗, Y ′m1 )= r−k

m
. Thus,

µ
(
C∗,X′n1

)−µ
(
C∗, Y ′m1

)= k

n
− r − k

m
= N

m

(
k

n
− r

N

)
,

and r
N
= µ(C∗,X′n1× Y ′m1 ). Hence, we have

Pr
{∣∣µ(C∗,X′n1)−µ

(
C∗, Y ′m1

)∣∣> ε∗
}

= Pr
{∣∣µ(C∗,X′n1)−µ

(
C∗,X′n1 × Y ′m1

)∣∣> (m
N

)
ε∗
}
, (67)

whereµ(C∗,X′n1×Y ′m1 )= r
N

is non-random ifC∗ is fixed as well as the sampleXn
1×Ym

1
obtained from the distributionµ. Now we have to state an upper bound of Cramér–
Chernoff type for the probability

Pr
{∣∣∣∣µ(C∗,X′n1)− r

N

∣∣∣∣> (mN
)
ε∗
}
, (68)

whereX′n1 is a sampling without replacement draw from the set of pointsXn
1 × Ym

1 . We
write

Pr
{∣∣∣∣µ(C∗,X′n1)− r

N

∣∣∣∣> (mN
)
ε∗
}
= ∑

k: | kn− r
N
|>( m

N
)ε∗

Ck
r C

n−k
N−r

Cn
N

. (69)

Then, by Stirling’s formula, one gets straightforwardly6

1

n
log
(
Ck
r C

n−k
N−r

Cn
N

)
�−

{
H

(
k

n
,
r

N

)
+ m

n
H

(
r − k

m
,
r

N

)
+ 6

n
log(N + 1)

}
, (70)

6 One could also check some neat large deviations formulations for sampling without replacement for a
binary alphabet in [4] pp. 20–22 and pp. 318–323.
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whereH(p,q)= p log(p/q)+ (1− p) log((1− p)/(1− q)).
We recall that the functionx → H(x, q) is decreasing forx < q and increasing

for x > q. Let us considerk such thatk
n
− r

N
> (m

N
)ε∗. We notice that, in this case,

k→H(k
n
, r
N
) increases, and we have

H

(
k

n
,
r

N

)
>H

(
r

N
+ m

N
ε∗,

r

N

)
. (71)

Moreover, we have thatr−k
m

< r
N

and→H(r−k
m
, r
N
) is also increasing ink. Thus,

H

(
r − k

m
,
r

N

)
>H

(
r

N
− n

N
ε∗,

r

N

)
. (72)

We then have, by brutally bounding the second term under the exponential (by zero!),

∑
k: k

n
− r

N
>( m

N
)ε∗

Ck
r C

n−k
N−r

Cn
N

� r(N + 1)6 exp
{
−n
(
H

(
r

N
+ m

N
ε∗,

r

N

)

+ m

n
H

(
r

N
− n

N
ε∗,

r

N

))}
(73)

� r(N + 1)6 exp
{
−nH

(
r

N
+ m

N
ε∗,

r

N

)}
. (74)

Similarly, for k such thatk
n
− r

N
<−(m

N
)ε∗, we obtain

∑
k: k

n
− r

N
<−( m

N
)ε∗

Ck
r C

n−k
N−r

Cn
N

� r(N + 1)6 exp
{
−nH

(
r

N
− m

N
ε∗,

r

N

)}
. (75)

We finally use the fact thatr �N to end the proof. ✷
In the sequel, we will consider only the case of a critical valuep smaller than 1/2 (this

is indeed just a matter of notations since�p =�1−p). The other part shall be treated in
the same way. Now consider the random variabler which has a binomial distribution
with parameters(N,µ(C∗)). Its rate function is known to bex→H(x,µ(C∗)).

Intuitive argument. Suppose we can directly proceed as in the proof of Varadhan’s
lemma (see e.g. in [4] the remark p. 137). Then, we would have the following upper
bound onτ(n,m, ε,µ) (which is not rigorously correct).

1∫
0

∑
C∗∈�∗

2(N + 1)7 exp
{
−n�u

(
m

N
ε∗
)
−NH

(
u,µ(C∗)

)}
du.

Intuitively, we can see that it suffices to show that the value of the integral is given
essentially on the neighborhoods aroundµ(C∗) for eachC∗. Then takingN large enough
compared ton shall end the proof.
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Rigorous argument. Let us go through the details. In the sequel,x will denote a
point in the product space(Rd)N (a sample ofN points ofRd ). We start from the bound
on τ(n,m, ε,µ),

2
∫ ∑

C∈�∗(x)
φ
(
r(C)

)
dµ⊗N(x) (76)

where

φ(r) := φ(r,m,n, ε∗)= (N + 1)7 exp
{
−n� r

N

(
m

N
ε∗
)}

.

First, we fixδ such thatp+ 4δ < 1/2, and we decompose, for anyx, the finite family
�∗(x),

�∗(x)= �∗1(x) ∪�∗2(x)∪ �∗3(x) (77)

where

�∗1(x)=
{
C ∈ �∗(x):

r(C)

N
� p+ 4δ

}
,

�∗2(x)=
{
C ∈ �∗(x): p+ 4δ <

r(C)

N
< 1− p− 4δ

}
,

�∗3(x)=
{
C ∈ �∗(x):

r(C)

N
� 1− p− 4δ

}
.

We have that, forr/N � p+ 4δ < 1/2, φ is non-decreasing, and forr/N � 1− p −
4δ > 1/2,φ is non-increasing. Therefore, we obtain the following inequalities

∀C ∈ �∗1, φ
(
r(C)

)
� (N + 1)7 exp

{
−nH

(
p+ 4δ+

(
m

N

)
ε∗,p+ 4δ

)}
, (78)

∀C ∈ �∗3, φ
(
r(C)

)
� (N + 1)7

× exp
{
−nH

(
1− p− 4δ −

(
m

N

)
ε∗,1− p− 4δ

)}
, (79)

and then we can bound uniformly the corresponding parts of the sum using the fact that
|�∗(x)| = N (�,X1, . . . ,Xn,Y1, . . . , Ym) � s(�,N). Using the symmetry properties of
the functionH , we finally obtain

∑
C∈�∗1(x)∪�∗3(x)

φ(r(C)) � s(�,N)(N +1)7 exp
{
−nH

(
p+ δ+

(
m

N

)
ε∗,p+ δ

)}
. (80)

For the remaining sets (in�∗2), we detect the “worst set” which shall be denoted by

C̃(x)= argmax
C∈�∗2(x)

φ

(
r(C)

N

)
(81)

and we use a uniform bound for the sum

∑
C∈�∗2(x)

φ
(
r(C)

)
�
∣∣�∗2(x)∣∣φ(r(C̃(x))N

)
. (82)
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Now we introduce the event

>=
{
x: p+ 4δ <

r(C̃(x))

N
< 1− p− 4δ

}
(83)

and we attempt to control its probability by applying Varadhan’s lemma uniformly
over the set>. We recall indeed that the rate function of the random variabler(C)

N
is

u→ H(u,µ(C)). However, we cannot apply Varadhan’s lemma straightforwardly on

the random variabler(C̃(x))
N

because its expected valueµ(C̃(x)) depends on the samplex.
First, we notice that

∣∣�∗2(x)∣∣φ(r(C̃(x))N

)
� s(�,N)(N + 1)7, (84)

and we then focus on the estimation of the integral
∫

1>(x) dµ⊗N(x).

Estimation of
∫

1�(x)dµ⊗N(x). We first introduce a finite, and fixed,δ-approxima-
tion �̃ of � such that̃� = {C̃1, . . . , C̃I }, and

∀C ∈ �, ∃ i: µ(C)C̃i) < δ.

From inequality (24), we have that

I = |�̃| ∼
(

1

δ

)V

. (85)

We introduce the sets

Ai = {x: µ
(
C̃(x))C̃i

)
< δ

}
, (86)

Ki =
{
x:
∣∣∣∣r(C̃(x))N

− r(C̃i)

N

∣∣∣∣< 2δ
}
, (87)

and we use the following decomposition

(
R

d
)N ⊂ I⋃

i=1

Ai =
I⋃

i=1

(
(Ai ∩Ki)∪ (Ai ∩Ki)

)
, (88)

which holds because� is assumed to be a totally bounded family.
On the one hand, we have∫

Ai∩Ki

1>(x) dµ⊗N(x) �
∫

1
{p+2δ<

r(C̃i )

N
<1−p−2δ}

(x) dµ⊗N (x), (89)

and this last integral can be controlled thanks to Chernoff’s inequality. We have indeed

∫
1
{p+2δ<

r(C̃i )

N
<1−p−2δ}

(x) dµ⊗N(x)= Pr
{
p+ 2δ <

r(C̃i)

N
< 1− p− 2δ

}
. (90)
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Then, we have, ifµ(C̃i) < p,

Pr
{
p+ 2δ <

r(C̃i)

N
< 1− p− 2δ

}
� Pr

{
r(C̃i)

N
> p+ 2δ

}
, (91)

� exp
{−NH

(
p+ 2δ,µ(C̃i)

)}
, (92)

� exp
{−NH(p+ 2δ,p)

}
, (93)

where the inequality (92) is the straightforward application of Chernoff inequality (6),
and the inequality (93) is due to the fact that the functionq→ exp{−NH(u, q)} is non-
decreasing foru > q.

In a similar way, ifµ(C̃i) > 1− p, we obtain

Pr
{
p+ 2δ <

r(C̃i)

N
< 1− p− 2δ

}
� exp

{−NH(1− p− 2δ,1− p)
}
, (94)

thanks to the monotonicity of the functionq → exp{−NH(u, q)}, which is non-
increasing foru > q, and also to the second Chernoff inequality (7).

Hence, we have obtained the following bound for any indexi (becauseH(x+y, x)=
H(1− x − y,1− x)),∫

Ai∩Ki

1>(x) dµ⊗N (x)� exp
{−NH(p+ 2δ,p)

}
. (95)

On the other hand, we have∫
Ai∩Ki

1>(x) dµ⊗N(x) �µ⊗N(Ai ∩Ki). (96)

We introduce the following notation

(Z1, . . . ,ZN) := x = (X1, . . . ,Xn,Y1, . . . , Ym),

and we notice that ∣∣r(C̃(x))− r(C̃i)
∣∣� N∑

k=1

∣∣(1
C̃(x)

− 1
C̃i
)(Zk)

∣∣ (97)

=
N∑
k=1

1
C̃(x))C̃i

(Zk). (98)

Hence,

x ∈Ai ∩Ki ⇒ 1

N

N∑
k=1

1
C̃(x))C̃i

(Zk)−µ
(
C̃(x))C̃i

)
� δ and µ

(
C̃(x))C̃i

)
< δ

⇒ sup
C∈B(C̃i,δ)

(
1

N

N∑
k=1

1
C)C̃i

(Zk)−µ(C)C̃i)

)
� δ,
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whereB(C̃i, δ)= {C: µ(C)C̃i) < δ}. Thus, we have

µ⊗N(Ai ∩Ki)� Pr

{
sup

C∈B(C̃i,δ)

(
1

N

N∑
k=1

1
C)C̃i

(Zk)−µ(C)C̃i)

)
> δ

}
. (99)

At this point, we use the proposition proved with the approximation method in the
previous section (Proposition 4.1) which states that, forNδ2 large enough, there exists a
constantK and a corrective termβ such that

Pr

{
sup

C∈B(C̃i,λ)

(
1

N

N∑
k=1

1
C)C̃i

(Zk)−µ(C)C̃i)

)
> δ

}

�K exp
{−N(1− β)H(2δ, δ)

}
. (100)

We can fixβ = 1/2. We have proved that, forNδ2 large enough, the following bound
holds, ∫

Ai∩Ki

1>(x) dµ⊗N(x) �K exp
{
−N

2
H(2δ, δ)

}
. (101)

Thus, we have obtained a uniform version of Varadhan’s lemma, ifNδ2 is large
enough, for the integral∫

1>(x) dµ⊗N (x)

�K

((
1

δ

)V

exp
{−NH(p+ 2δ,p)

}+ exp
{
−N

2
H(2δ, δ)

})
. (102)

We will now show that the ratio

H(p+ 2δ,p)
1
2H(2δ, δ)

(103)

is smaller than 1 forδ small enough. We will need a simple inequality by Hoeffding [11].
Indeed, ifx < 1/2, we have

H(x + y, x) � 1

1− 2x
log
(

1− x

x

)
y2. (104)

Moreover, we have, for fixedx, wheny tends to zero,

H(x + y, x)∼ y2

2x(1− x)
. (105)

Hence, asδ comes closer to zero, we have

H(p+ 2δ,p)
1
2H(2δ, δ)

�
4δ2

2p(1−p)
1
2

1
1−2δ log(1−δ

δ
)δ2
∼ 4

log(1/δ)
< 1. (106)
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We can then neglect the second term at the cost of increasing the multiplicative
constantK . Thus, we shall use the bound∫

1>(x) dµ⊗N(x) �K

(
1

δ

)V

exp
{−NH(p+ 2δ,p)

}
. (107)

Global bound on τ(n,m,ε,µ). Hence, we have obtained an explicit bound on
τ(n,m, ε,µ) for δ small enough, which is the following

τ(n,m, ε,µ)�Ks(�,N)(N + 1)7
(

exp{−nH1} +
(

1

δ

)V

exp{−NH2}
)
, (108)

where we have used the following notations

H1=H

(
p+ 4δ + m

N
ε∗,p+ 4δ

)
, (109)

H2=H(p+ 2δ,p). (110)

Now consider the following functions,

fx(q)=H(q + x, q) (x fixed), (111)

gp(x)=H(p+ x,p) (p fixed). (112)

Thanks to the convexity of both functionsfx andgp, we have

fx(p+ 4δ)� fx(p)+ 4δf ′x(p), (113)

gp(2δ)� c(p)δ2, (114)

wherec(q) is some constant depending onq. Hence, if we setx = m
N
ε∗, we have

exp{−nH1} = exp
{−nfx(p+ 4δ)

}
= exp

{
−nH

(
p+ 4δ + m

N
ε∗,p+ 4δ

)}
(115)

� exp
{
−nH

(
p+ m

N
ε∗,p

)}
· exp

{−n4δf ′x(p)
}
. (116)

Thus,δ should be at most of the order1
n

sincef ′x(p) is usually negative (and bounded
sincem∼ N ) and behaves likeε2. Moreover, to control the second term, we shall take
N such that

NH2 � nH1. (117)

Thus, we imposeN to satisfy

Ngp(2δ)� nH

(
p+ m

N
ε∗,p

)
, (118)

while we are assuming thatδ is of the order1
n
. Hence, we can chooseδ andN verifying

Nc(p)δ2 � nH

(
p+ m

N
ε∗,p

)
, (119)
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which leads to aδ of the order
√

n
N

. Eventually, whenδ goes to zero as1
n
, choosing

N = n3 gives a bound onτ(n,m, ε,µ), for some constantK , like

τ(n,m, ε,µ)�Kn3V+21exp
{−nH(p+ ε,p)

}
, (120)

where we have used Sauer’s lemma7 to bounds(�,N).
To obtain, the global bound onρ(�,n,m, ε,µ), we setα = 1

n
in the inequality (60).

Remark5.2. – Note that we have obtained an exponential rate inH(p+ε,p) because
we assumed that the critical valuep is smaller than 1/2. If we had takenp > 1/2,
we would have found a rate inH(p − ε,p). The exponential rate�p(ε) given in the
formulation of Theorem 2.1 covers both cases.

6. Open issues

The result presented in this paper certainly appeals to several improvements.
Talagrand has suggested in [21] that the proof technique used to prove his universal
bound could be adapted in order to lead to tight distribution-dependent results (see [21],
p. 63, last paragraph of Section 6). Indeed, the issue is to obtain the same exponential
rateφ(ε)=�p(ε) as in Theorem 2.1 with a fairly tight capacity term (likeτ = V − 1/2
instead of ourτ = 3V + 21).

There are other related issues which could be explored in the same spirit.
• Formulate and prove similar bounds in a functional setting.
• Compute tight bounds on the expected value of the maximal deviation, which is

a question of growing interest since the impressive recent results on concentration
inequalities (see [3,20], and their references).

Moreover, we point out that theoretical analysis on VC bounds and VC dimension
could benefit of an empirical study. Indeed, we have proposed in [29] to use computer
simulations to estimate the probability of the event{supC∈� |µn(C) − µ(C)| > ε}
for particular distributionsµ. Through this experimental approach, there are several
conjectures which can be tested on particular examples.
• Validation of the general structure of VC bounds, and control of asymptotical

corrections (existence of polynomial terms smaller than(nε2)τ ).
• Numerical values for the multiplicative constantK and the capacity indexτ .
• Test of the relationship between the indexτ and the VC dimensionV (for instance,

we have checked, that, for halfspaces, the formulaτ = V − 1 holds true).
• Dependence of the effective VC dimension on the underlying distributionµ (on a

simple example, we have observed that the estimated values of the VC dimension
V for a fixed family� depend strongly on the distributionµ).

We find this experimental work very stimulating and complementary to the theoretical
analysis. Indeed, the simulation part appears as a very promising means to develop
intuition and state conjectures about issues such as the distribution-sensitivity of
combinatorial capacities.

7 This combinatorial result gives a polynomial bound on the shattering coefficient in case of a finite VC
dimension:s(�,N) � (eN/V )V .
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