@article{AIHPB_1983__19_2_189_0, author = {Berman, Simeon M.}, title = {Local nondeterminism and local times of general stochastic processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {189--207}, publisher = {Gauthier-Villars}, volume = {19}, number = {2}, year = {1983}, mrnumber = {700709}, zbl = {0516.60047}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1983__19_2_189_0/} }
TY - JOUR AU - Berman, Simeon M. TI - Local nondeterminism and local times of general stochastic processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1983 SP - 189 EP - 207 VL - 19 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1983__19_2_189_0/ LA - en ID - AIHPB_1983__19_2_189_0 ER -
Berman, Simeon M. Local nondeterminism and local times of general stochastic processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 19 (1983) no. 2, pp. 189-207. http://www.numdam.org/item/AIHPB_1983__19_2_189_0/
[1] The Geometry of Random Fields, John Wiley and Sons, New York, 1981. | MR | Zbl
,[2] Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc., t. 137, 1969, p. 277-299. | MR | Zbl
,[3] Gaussian processes with stationary increments: local times and sample function properties. Ann. Math. Statist., t. 41, 1970, p. 1260-1272. | MR | Zbl
,[4] Gaussian sample functions: uniform dimension and Holder conditions nowhere. Nagoya Math., J., t. 46, 1972, p. 63-86. | MR | Zbl
,[5] Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., t. 23, 1973, p. 69-94. | MR | Zbl
,[6] Local times of stochastic processes with positive definite bivariate densities, Stochastic Processes Appl., t. 12, 1982, p. 1-26. | MR | Zbl
,[7] Local times of stochastic processes which are subordinate to Gaussian processes. J. Multivariate Anal., t. 12, 1982, p. 317-334. | MR | Zbl
,[8] On existence of subsets of finite measure of sets of infinite measure. Indag. Math., t. 14, 1952, p. 339-344. | MR | Zbl
,[9] Local nondeterminism and the zeros of Gaussian processes. Ann. Probability, t. 6, 1978, p. 72-84. | MR | Zbl
,[10] Sample functions of stochastic processes with stationary independent increments. Advances in Probability, t. 3, 1973, p. 241-396. | MR | Zbl
,[11] Occupation densities. Ann. Probability, t. 8, 1980, p. 1-67. | MR | Zbl
and ,[12] On the comparison of measure functions. Math. Proc. Cambridge Phil. Soc., t. 78, 1975, p. 483-491. | MR | Zbl
,[13] Sur certains processus stochastiques homogenes. Compositio Math., t. 7, 1939, p. 283-339. | EuDML | JFM | Numdam | MR | Zbl
,[14] Capacity of level sets of certain stochastic processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 34, 1976, p. 279-284. | MR | Zbl
,[15] Gaussian sample functions and the Hausdorff dimension of level crossings. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 15, 1970, p. 249-256. | MR | Zbl
,[16] The exact Hausdorff measure of the level sets of Brownian motion. Z. Wahrscheinlichkeitstheorie Verw. Gebiete, t. 58, 1981, p. 373-388. | MR | Zbl
,[17] Local times for Gaussian vector fields, Indiana Univ. Math. J., t. 27, 1978, p. 309-330. | MR | Zbl
,[18] Sample path properties of processes with stationary independent increments. In Stochastic Analysis, John Wiley and Sons, New York, 1973. | MR
,[19] The exact Hausdorff measure of the zero set of a stable process. Z. Wahrscheinlichkeitstheorie Venw. Gebiete, t. 6, 1966, p. 170-180. | MR | Zbl
and ,[20] A property of Brownian motion paths. Illinois J. Math., t. 2, 1958, p. 425-432. | MR | Zbl
,