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ABSTRACT. - Let X(t), 0  1, be a real stochastic process, and

let g(t ), 0 ~ 1, be a nonnegative integrable function. X(t ) is said to

be locally g-nondeterministic if for every k > 2, there exists c~ > 0 such that
the joint density of the k - 1 increments, X (t~ + 1 ) - X (t J), j =1, ... , k -1,
t1  ...  tk, evaluated at the origin, is bounded above by

This condition implies the validity of key estimates in the analysis of the
local time of the process. The latter imply specific irregularity properties
of the sample functions. Such properties have been studied for several
years in the context of Gaussian processes. The contribution of this work

is the demonstration that local nondeterminism can be usefully defined
even for processes that are not necessarily Gaussian, and that the compre-
hensive theory of sample function irregularity for the latter processes can
be extended to more general processes. Applications to Markov processes
are exhibited.

This paper represents results obtained at the Courant Institute of Mathematical

Sciences, New York University, under the sponsorship of the National Science Foun-
dation, Grant MCS 8201119.
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190 S. M. BERMAN

1. INTRODUCTION

The purpose of this work is to show how the concepts and calculations
used in the analysis of local times of Gaussian processes can be fruitfully
extended to a much larger class of processes. One of the central ideas
in the Gaussian context is « local nondeterminism », introduced by the
author in [S ]. There it signifies that the value of the process at a given time
point is relatively unpredictable on the basis of a finite set of observations
from the immediate past. This means that there is a permanent element
of uncertainty in the local evolution of the sample function. In the Gaussian
case, the process is called locally nondeterministic if the conditional variance
of an increment, given the values of a finite set of observations from the
immediate past, is bounded below by a constant positive multiple of the
unconditional variance. In the general case, the incremental variance,
as a measure of local unpredictability, is replaced by a measure of local
predictability, namely, the value of the incremental density function at
the origin. More precisely, local nondeterminism involves a suitable bound
on the joint density function of increments over nonoverlapping intervals,
where the density is evaluated at the origin.
The formal definition of this concept in the general case leads to an

extension of the methods and results in the Gaussian case. The theme of

our research in this area has been that the smoothness of the local time,
as a function of of the time parameter and the space variable, implies spe-
cific irregularity properties of the sample functions. Local nondeterminism
provides the basis of a set of computations required to establish the smooth-
ness of the local time. There is a major difference between the general
method of this paper, and the previous work for the specific Gaussian
process : the irregularity of the sample functions is based on the smoothness
of the local time only as a function of the time parameter. Smoothness
in the space variable is replaced by the assumption of the higher order
integrability of the local time in the space variable. Previous results requiring
smoothness in the space variable were so restricted that they had to be
limited to the Gaussian case, or to cases that were very close to the Gaussian.

We prove two results about the behavior of the sample functions. The first
is : the approximate lim sup (for s --~ t) of the ratio, X(t) - X(s) /b{ ~ )
is infinite for all t, almost surely, for a class of functions determined by
the hypothesis of local nondeterminism. The first result of this type was
proved by the author [3 ] : if a function has a jointly continuous local time,
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191LOCAL NONDETERMINISM AND LOCAL TIMES OF GENERAL STOCHASTIC PROCESSES

then, the statement above holds with b{s) = s. The ramifications of this
result, and its relations to Jarnik functions, were considered by Geman
and Horowitz; an extensive discussion is contained in their survey [11 ].
The novelty of our current result is that the local property holds at every
point almost surely without the requirement that the local time is conti-
nuous or Holder continuous in the space variable.

Our second result on the behavior of the sample functions is about the
magnitude of the level sets. Let w(t) be a Hausdorff measure function,
and consider the w-measure of the set {s: X(s) = X(t ) ~ for each t. Our
theorem states that if w(t ) is at least as large as a function specified by the
condition of local nondeterminism, then the w-measure of the indicated
set is almost surely infinite, for almost all t. This represents a generalization
of earlier theorems in the Gaussian case on the Hausdorff dimension of

the level sets, where w(t ) is of the special form t ~°‘. There the lower bound
on the dimension of the level set was obtained by local time methods. Mar-
cus [14 ] showed that the capacity methods used in the Gaussian case could
also be used in a more general situation. Our present method, which is
not restricted to the measure functions I t ~", uses only the smothness and
integrability properties of the local time mentioned above.

The concept of local time was first formulated in the case of the Brownian
motion process by Levy [13 ] ; his work was continued by Trotter [20].
Since that time, the subject developed in two distinct directions, namely,
for processes with independent increments, and for Gaussian processes.
Geman and Horowitz made a survey of the two fields, and indicated some
of the common features. The primary purpose of our work, as noted above,
is to show how local nondeterminism, a central concept of Gaussian local
times, can be formulated in a manner so general that it can be applied
to other processes of interest. Our first result above, on the approximate
lim sup of the difference quotient, appears to be new even in the case of
processes with independent increments. Our second result on the lower
bound for the measure of the level set, although not new for the latter
processes, is new for the general class of Markov processes satisfying
the simple conditions described in example 7.2.
We close with a brief survey of local nondeterminism. After our intro-

duction of the concept in [S ], Pitt [1 7] extended it to random fields in the
Gaussian case. Cuzick [9 ] introduced the modification of local « §-non-
determinism », which motivated our definition of local g-nondeterminism.
(We use a different symbol because g = 1/~.) These results are all described
in the survey of Geman and Horowitz [11 ]. A recent addition in book
form is that of Adler [1 ]. Since the publication of these results, the author
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192 S. M. BERMAN

has also introduced the concept of local nondeterminism for a class of

processes which are not necessarily Gaussian, but are strongly related
to them [1 ].

2. LOCAL TIMES

FOR REAL VALUED MEASURABLE FUNCTIONS

For the convenience of the reader, we restate some basic definitions.
Let x{t ), 0 ~ t  1, be a real valued measurable function. For every pair
of linear Borel sets A c (- oo, and I c [0, 1 ], define

If, for fixed I, v(., I) is absolutely continuous as a measure of sets A,
then its Radon-Nikodym derivative, which we denote as is called

the local time of x(t ) relative to I. It satisfies

We say that the local time is square integrable is integrable over all x.

LEMMA 2.1. - Let x(t ) have the local time aI’ Then, for every A and I,
and every p > 1 and q > 1 satisfying + q -1 - 1,

where the integral may be finite or infinite.

Proof - Let XA(X) be the indicator of the set A; then write v in (2 .1 )
as the integral of the product and apply Holder’s inequality.

For p > 1, define - 

-

Then ~{ . ) is a nonnegative, nondecreasing, subadditive set function:

Indeed, if I and I’ are disjoint, then, by definition,

for almost all x. If the sets are not disjoint, it follows that the equality sign in
the equation above is replaced by the inequality sign::::;;. The subadditivity
of 03BE now follow s by integration of (ai + and the application of Min-
kowski’s inequality.

Annales de l’Institut Henri Poincaré-Section B



193LOCAL NONDETERMINISM AND LOCAL TIMES OF GENERAL STOCHASTIC PROCESSES

LEMMA 2 . 2. - Let 5(s), s > 0 ,be a positive function such that

then

~ (Remark: We recall the following definition; see, for example [11].
The approximate lim sup of the function f (s) for s - t is at least y if t
is not a point of dispersion for the set {s: y }. The approximate
lim sup is + 00 if the latter is true for every y > 0.)

Proof - For arbitrary M > 0, 0  t  l, and s > 0

is, by Lemma 2.1, at most equal to

By (2 . 4), the latter has the lim inf 0. Therefore, t is not a density point
for the set,

Therefore, it is not a dispersion point for the complementary set,

Therefore, the approximate lim sup of the ratio is at least equal to M.
Since M is arbitrary, the conclusion follows.
The next result is about the relation between the smoothness of ai as

a function of I, and the magnitude of the level sets { s : x(s) _ _~~( t ) ~ for

1. The magnitude will be expressed in terms of a Hausdorff
measure. We recall the definition of such a measure. Let w(t ), 0 ~ t x 1,
be an increasing, right continuous function such that w(0) = 0; such a
function is called a measure function. For an arbitrary subinterval B of [0, 1 ],
put B = length of B. For arbitrary 5 > 0, and a subset J c [0, 1 ], define

Vol. XIX, n° 2-1983.



194 S. M. BERMAN

where the infimum is taken over all sequences of intervals B~ whose length
is at most ~, and whose union contains J. Then we define the w-measure
of J as lim p5(J).

Suppose that w satisfies the additional condition:

If, in the definition of the w-measure, we restrict the class of intervals B
to the dyadic rational intervals,

then we obtain a possibly larger measure for a given set through the same
covering process. Let ,u(J) and ,u*(J) be the measures calculated from the
class of all intervals and all dyadic intervals, respectively : then,

This was originally proved by Besicovitch [8 ] for the special functions
w(t) = ta, but the proof is valid for all measure functions w satisfying (2. 7) ;
see Hawkes [~2 ].

LEMMA 2 . 3... Let w be a measure function satisfying (2. 7), and let
be the local time of the function x(t ), 0 ~ t  1, relative to the inter-

val in (2. 8). If for some p > 1,

then there exists a set N of Lebesgue measure 0 such that

for every Lebesgue measurable set J of finite w-measure..

Proof - The assumption (2.10) and Fubini’s theorem imply the existence
of a set N of measure 0 such that

for all Therefore,

Annales de l’Institui Henri Poincaré-Section B



195LOCAL NONDETERMINISM AND LOCAL TIMES OF GENERAL STOCHASTIC PROCESSES

for all x E cN. If J is a measurable set of finite w-measure, then, for x E cN,
rxix) is dominated by a sum over an arbitrary covering subfamily

}. (We have implicitly used the fact that there is a version of the
local time which is a measure in sets I [3 ].) By (2 .12) there is such a sum
which is arbitrarily small, and this proves (2.11).

THEOREM 2 .1. - Let w be a measure function satisfying (2. 7) and (2 .10).
Then, for almost all t, 0 ~ t  1, the set { s: x(s) = x(t ) ~ is of infinite

w-measure.

Proof - Put M = ~ y : ~ s : x(s) == ~ } is of finite w-measure }. Let N be
as in Lemma 2 . 3. If x E M n ~N, then

By the result of Geman and Horowitz [Il ], Theorem (6.4), it follows

that if another fixed set of measure 0 is ignored, then the equation above
implies = 0. Thus, with the exception of a null set, we have
M = 0 ~. The latter inclusion also holds for the corres-

ponding preimages because the inverse image of a null set for a function
with a local time is also a null set.

This means that

except for a null t-set. But the second set displayed above has t-measure 0;
see [11 ], formula (6.7). The proof is complete.

3. SUFFICIENT CONDITIONS FOR THE EXISTENCE

AND SQUARE INTEGRABILITY OF THE LOCAL TIME
OF THE SAMPLE FUNCTION

OF A STOCHASTIC PROCESS

Let X(t ), 0 ~ t ~ 1, be a real valued, separable and measurable sto-
chastic process. Suppose that for each s and t, s ~ t, the random variables

X(s) and X(t ) have a joint density function p(x, y; s , t ).

THEOREM 3.1. - If the function

Vol. XIX, n° 2-1983.
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is continuous in (x, y), and

then the local time aI(x) exists almost surely, and

for every measurable I c [0, 1 ].

Proof - First we show that q(x, y) is a positive definite kernel on R2.
Indeed, for any bounded measurable function g(x), we have, by (3.1)

_ and Fubini’s theorem,

Since, by assumption, q is continuous, the Cauchy-Schwarz inequality
implies , 

-

for all x and y.
Let xA(x) be the indicator function of the set A, and define, for E > 0,

According to [11 ], Theorem (21.15), the existence almost surely of a
square integrable local time is implied by

By (3 . 4), the double integral in (3.6) is at most equal to

Since ~E is a density function, the second moment inequality implies that
the inner integral above is at most equal to

Annales de I’Institut Henri Poincaré-Section B



197LOCAL NONDETERMINISM AND LOCAL TIMES OF GENERAL STOCHASTIC PROCESSES

so that the preceding double integral is at most equal to

By the Cauchy-Schwarz inequality, the latter is at most equal to the square
root of

This completes the proof of (3.6), and so a square integrable local time
exists. The inequality (3.3) now follows by using the calculations above

in the representation of as (see [11 ], Theorem (7 . 2))

and then employing Fatou’s lemma. Here the set I simply replaces [0, 1 ]
as the domain of integration.

Remark. Theorem 3 .1 is related to that of Pitt [17 ], but the hypo-
thesis and conclusion are different. He notes that his hypothesis Ak (here
for k = 2) can actually be weakened to the assumption of the boundedness
of our function q(x, y); see [l7], page 314. However, his conclusion is that
the local time is square integrable only over compact sets.
We also note that Theorem 3.1 is also more general than our corres-

ponding result in [6], Theorem 3.1, because there we supposed that the
densities are positive definite.

4. AN INEQUALITY FOR THE HIGHER MOMENTS
OF THE LOCAL TIME

Assume that, for every k > 1, the k-dimensional distributions of the
process have a densitv with respect to Lebesgue measure: and let

.. -, tl, ..., tk) be the joint density function of random variables
X( t 1 ), ..., X(tk) at the point ..., Define

Vol. XIX, n° 2-1983.
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We now obtain an inequality for the latter function for a certain subsequence
of integer values k.

LEMMA 4.1. - If k is a positive integral power of 2, and qI, defined
by (4.1), is continuous on Rk, then

Proof - For typographical convenience, we suppress the index set I,
and put q = qI. We give the proof first for k = 4 where the computation
is relatively simple, but sufficiently illustrative of the general case. We
note that (3.4) covers the case k = 2.
We observe that q(x 1, x2 , x3 , x4) is a positive definite kernel in the two

(2-dimensional) variables (x 1, x2) and (x3 , x4). Indeed, if g(x, y) is an

arbitrary bounded measurable function on R2, then, as in the proof of
Theorem 3.1,

Then it follows from the assumed continuity of q and the Cauchy-Schwarz
inequality that

It is clear from (4.1) that q is a symmetric function of its variables; hence,
by another application of (4.3),

1 1

and a similar bound holds for q(x3 , x4, x3 , x4). This completes the proof
of (4.2) for k = 4.
The proof of the general case k = 2"’ for some integer m > 1 is concep-

tually similar but notationally more complex. The positive definiteness
and continuity of q imply

By symmetry, the latter is equal to

Annales de l’Institut Henri Poincaré-Section B



199LOCAL NONDETERMINISM AND LOCAL TIMES OF GENERAL STOCHASTIC PROCESSES

Another application of positive definiteness yields, through the Cauchy-
Schwarz inequality,

which, by symmetry, is equal to

This procedure is repeated until k identical variables are obtained in
the right hand bound for the q-functions.

THEOREM 4 .1. - Under the conditions of Theorem 3 .1 and Lemma 4 .1,
we have

for every I, and where the right hand member may be finite or not.

Proof By the results of [11 ], Section 7, we may express the,left hand
member of (4.4) as

which, by Fatou’s lemma, is at most equal to the lim inf, for E --~ 0, of

By (4. 5), the latter is equal to

By Lemma 4.1, the latter is at most equal to

Vol. XIX, n° 2-1983.
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Since 5g is a probability density, the kth moment inequality implies that
the integral above is at most equal to

Now apply the Holder inequality with p = k; then the expression above
is at most equal to

This completes the proof.
Remark. The comment following the proof of Theorem 3 .1 regarding

Pitt’s result is also appropriate here. We also note that we do not require
his conditions of th~~ type Bk, concerning Holder conditions in the space
variables of the joint density.

5. LOCAL NONDETERMINISM

Let X(t), 0  t  1, be a real valued stochastic process whose finite-

dimensional distributions have densities with respect to Lebesgue measure.
For  ...  tk  1, let ..., tk) be the joint density function
of the k - 1 increments X(t~+~) - X(tj), j = 1, ..., k - 1, at the origin
in By an elementary transformation of variables, p~ is obtained from

the joint density function of X(t;), i = 1, ..., k, by means of the formula,

DEFINITION 5.1. 2014 Let g(t) be a nonnegative measurable function such
that

n, 

X(t ) is said to be locally g-nondeterministic if there is a sequence of positive
numbers such that

for all 0  tI  ...  tk  l, and all k > 2.

Annales de l’Institut Henri Poincaré- SectiC!,n B
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When k = 2, P2(tl, t2) is the density of X(t2) - X(tl) at 0, and (5.2)
asserts that p~ is bounded by g( ~ t2 - If X has stationary increments,
then p~ is a function of t2 - tl, and we write p2{t2 - ti) = t2). In
such cases, p~ itself often serves in the role of the function g; here (5.2)
becomes

By writing the joint density of the increments as the product of the suc-
cessive conditional densities, we see that the relation (5 . 3), for every k > 2,
is equivalent to

Conditional density at 0, given 1 ) - X(ti ) = 0 for
i = 1, ..., j - 1, ~ Unconditional density of 1) - X(tj) at 0, times cJ,
for all j  2.

This signifies that the « likelihood » that the increment is equal to 0,
given that successive increments in the recent past have been equal to 0,
is of the same order of magnitude as when there is no information about
the values of past increments. This is an extension of the concept of local
nondeterminism in the Gaussian case, where the density at the origin is
the square root of the reciprocal of the determinant of the covariance
matrix. The idea of using a function g other than the density p~ was intro-
duced in the Gaussian case as local 03C6-nondeterminism by Cuzick [9].
The key estimate of this work is in the following lemma:

LEMMA 5.1. - Under the conditions of Theorem 4.1, if X(t ) is locally
g-nondeterministic, then the right hand member of (4 . 4) is at most equal to

for any interval I, and any k which is a positive integral power of 2.

Proof - It is clear that p(x, ..., x ; ti, ..., tk) is a symmetric function
of the t’s; hence the integral over Ik is equal to k ! times the integral over
t 1  ...  t k, tiE I, i = 1, ..., k ; thus,

Integrate over x, and then apply Fubini’s theorem; then the bound (5.4)
follows from (5.1) and (5.2).

Local nondeterminism can be extended to the case of a random field

X(t), where t E RN and Rd~ for d > 1, N > 1. The condition on the

Vol. XIX, n° 2-1983.



202 S. M. BERMAN

density of the increments is independent of the dimensionality of the state

space, and so it is the same for all d. In the place of the restrictions tj  f~ 1
on the parameter values, we may use the same conditions introduced by
Pitt [1 7] in the Gaussian case, namely, )) t j+ 1- tJ ~ ~  ~ ~ !!, for i  j.

6. LOCAL OSCILLATION OF THE SAMPLE FUNCTIONS

In this section we apply our results in Section 3 to the sample functions
of the stochastic process.

LEMMA 6 .1. - Let ~(I), where I is an arbitrary subinterval of [0, 1 ],
be a nonnegative, subadditive and nondecreasing random interval function.
Then, for every z > 0, n > 1, and p > 1,

Proof - Since ~ is subadditive, if ~([~ ~]) > z, for 0  ~2014~  ~ ~
then there is an integer j, 1  j  n - l, such that  b  J -+-1 )/n,
and

Thus the left hand member of (6.1) is at most equal to

which, by the Markov inequality, is at most equal to the right hand member
of (6 .1 )

THEOREM 6.1. - -Let X(t) be locally g-nondeterministic, and satisfy
the conditions of Theorem 4.1. Let 5(~), ~ > 0, be a positive function such
that for some ~ > 0,

Annales de l’Institut Henri Poincar-e-Section B
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Then, with probability 1,

Proof - Let 03BE be defined in terms of the local time as in (2.3). As indi-
cated following that formula, ~ satisfies the conditions of our lemma.

According to Lemma 2. 2, it suffices to show that (2.4) holds almost surely
for some p and q such that p-1 + q -1 - 1. The latter holds if the random
variable

converges to 0 in probability for s - 0. (For the purpose of applying
Lemma 6 .1 we may even restrict the variable s to the sequence for which 2s

is the reciprocal of an integer.) For arbitrary s > 0, put z = 
and apply (6.1); then the probability that (6.4) exceeds B is at most equal to

By Theorem 5.1, if p is of the form 2m for some integer m > 1, then the

expression displayed above is at most

Since p/q = p - 1, it follows from (6. 2) that the expression (6. 5) is of
the order ~~’ ~’~, which, for p > 1 + 2/~, converges to 0 for s -~ 0.

Therefore, (6.4) converges in probability to 0.

Remark. It follows immediately that if g has the bound g(t )  Ct-03B2
for small t, then X(t) nowhere satisfies a Holder condition of order > ~3.

THEOREM 6.2. - Let X(t) be locally g-nondeterministic and satisfy
the conditions of Theorem 4.1. Let w(t) be a measure function satisfying (2. 7)
and which, for sufficiently small t, is at least equal to some constant posi-
tive multiple of the function

for some e > 0 and some p of the form 2’~ for m > 1. Then, with proba-
bility 1, the set {s: X(s) = X(t)} is of infinite w-measure for almost all t,
0 ~ f ~ 1.

Vol. XIX, n° 2-1983.
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Proof. - Consider the series appearing in (2.10), where the function x(t)
is now the process X{t ). Take the expected value of the series, and then
change the order of summation and expectation. By Lemma 5.1, the
expected value is at most equal to a constant times

The series converges because w has the lower asymptotic bound (6.6).
It follows that the series (2.10) for X(t) converges with probability 1. The
assertion of this theorem now follows from Theorem 2.1.

COROLLARY. - If there is a number ~3, 0  ~i  l, such that g(t )  
for t near 0, then, with probability 1, the Hausdorff dimension of the set

{ s : X(s) = X(t ) ~ is at least equal to 1 - j3, for almost all t, 0 ~ t  1.

Proof - For arbitrary b, 0  b  1 - /3, consider the measure func-
tion w(t ) = tb. If p is sufficiently large, then b  -1/p + (1- ~)(p -1)/p. It
follows that the expression (6 . 6) is at most equal to a constant times t b
for small t. Theorem 6 . 2 implies that the w-measure is infinite, which implies
that the Hausdorff dimension of the set is greater than b.
We remark that local time methods give only a lower bound on the

magnitude of the level sets: indeed, they furnish a measure of the irre-
gularity of the sample function. The upper bound on the magnitude of
the level sets is based on the regularity of the sample function, and has to
be obtained by the corresponding methods.

7. APPLICATIONS

In applying the idea of local g-nondeterminism, it is useful to know
the form of the likely candidate for the role of the function g. As we noted
in Section 5, in the case of stationary increments we often consider the
density function of the increment at 0. Even if the increments are not

stationary, we might still be able to find a function g such that the density
of the random variable at the origin is bounded

I -~ 0. If X is stochastically continuous, then we necessarily
have g(t ) -~ oo for t -; 0.

EXAMPLE 7.1. - As noted earlier, local nondeterminism was intro-

duced by the author first in the context of Gaussian processes. In the case
. of stationary increments, the function g took the form of the reciprocal

Annales de l’Institut Henri Poiticaré-Section B



205LOCAL NONDETERMINISM AND LOCAL TIMES OF GENERAL STOCHASTIC PROCESSES

of the incremental standard deviation. Early cases of Theorems 6.1 and 6 . 2
~ 

are those in [3 ], [4 ] and [1 S ]. Again we refer to [11 ] for a complete survey.

EXAMPLE 7 . 2. - Let X(t ) be a time homogeneous Markov process
with a transition density function p(t; x, y) representing the conditional
density of X(t ) at y, given X(0) = x. Suppose that X(0) = xo . Then the joint
density of X(s) and X(t) is

It follows that the function q in (3.1) is

The condition (3.2) becomes

For arbitrary t 1  ...  tk, the joint density of ... , X(tk) at

(x 1, ..., xk) is

Therefore the joint density = 1, ..., k - 1, at (o, ...,0)is

Put

and suppose that Then (7.2) is dominated by

and so the process is locally g-nondeterministic. The implications of

Theorems 6.1 and 6.2 are new for the general processes considered here.

Vol. XIX, n° 2-1983.
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EXAMPLE 7.3. - Let us specialize the previous example to the case
where the process has stationary, independent increments. Let

be the Levy representation of the characteristic function. According to [2 ]
a sufficient condition for the existence and square integrability of the local
time for almost all sample functions is

If

then the density of X(t ) - X(s) exists and is continuous, and is equal to

at the origin. Since the increments over nonoverlapping intervals are

mutually independent, it follows that the joint density of the increments
is equal to the product of the functions (7.5) for

The transition density of the process is

hence, the function g~(t ) defined by (7 . 3) takes the form (7 . 5). The impli-
cations of Theorem 6.1, even in this special case, appear to be new.

The results of Theorem 6 . 2 are consistent with earlier results on the exact

dimension of the level sets for processes with stationary independent
increments, but not as refined. If ~(u) = C ( u ~°‘, 1  a  2, that is, the

process is stable of index oc, then it has been shown by Taylor and Wen-
del [19] ] that w(t ) = (log log is the exact measure function

for a fixed level set in the range.
Extensions of this result to the general class of processes with stationary

independent increments are described in the surveys of Taylor [18] ] and
Fristedt [1 Q ]. More recently, Perkins [16] ] proved a very exact result in

the case of the Brownian motion process: If w(t ) = (2t log log t )2, then
the w-measure of (s : 0 ~ s ~ t ) is equal to the local time at x,
and this holds for all x, almost surely.
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