@article{AIHPA_1999__70_3_239_0, author = {Vitolo, Raffaele}, title = {Quantum structures in {Galilei} general relativity}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {239--257}, publisher = {Gauthier-Villars}, volume = {70}, number = {3}, year = {1999}, mrnumber = {1718181}, zbl = {0965.81038}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1999__70_3_239_0/} }
Vitolo, Raffaele. Quantum structures in Galilei general relativity. Annales de l'I.H.P. Physique théorique, Tome 70 (1999) no. 3, pp. 239-257. http://www.numdam.org/item/AIHPA_1999__70_3_239_0/
[1] Nuovo Cimento 14 B, 217 (1973).
and ,[2] Quantum mechanics of a spin particle in a curved spacetime with absolute time, Rep. on Math. Phys., 36, 1 (1995), 95-140. | MR | Zbl
, and ,[3] Phys. Rev. D, 43, 3907 (1991). | MR
, and ,[4] Bargmann structures and Newton-Cartan theory, Phys. Rev. D, 31, n. 8 (1985), 1841-1853. | MR
, , and ,[5] Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, G.R.G., 16, n. 4 (1984), 333-347. | MR
and ,[6] The Poincaré-Cartan Invariant in the Calculus of Variations, Symposia Mathematica, 14 (1974), 219-246. | MR | Zbl
,[7] Cuantificion geometrica, Memorias de la R. Acad. de Ciencias de Madrid, XI, Madrid, 1979.
,[8] Differential geometry, gauge theories and gravity, Cambridge Univ. Press, Cambridge, 1987. | MR | Zbl
and ,[9] A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on General Relativity and Gravitational Physics, World Scientific, New York, 1993. | Zbl
and ,[10] Galilei General Relativistic Quantum Mechanics, 1993, book pre-print. | MR
and ,[11] Remarks on symplectic and contact 2-forms in relativistic theories, Boll. U.M.I., 7 (1994), 587-616. | MR | Zbl
,[12] Classical particle phase space in general relativity, Proc. "Diff. Geom. and Appl.", Brno, 1995. | MR
and ,[13] Quantisable functions in general relativity, Proc. "Diff. Oper. and Math. Phys.", Coimbra; World Scientific, 1995.
and ,[14] Quantization and unitary representations, Lectures in Modern Analysis and Applications III, Springer-Verlag, 170 (1970), 87-207. | MR | Zbl
,[15] Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D, 22, n. 6 (1980), 1285-1299. | MR
,[16] Gen. Rel. Grav. 7, 445 (1976).
,[17] General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings (1983), edit. A. Prastaro, Tecnoprint, Bologna 1984, 37-48. | MR
,[18] Fibered Spaces, Jet Spaces and Connections for Field Theories, in Proceed. of the Int. Meet. on Geometry and Physics, Pitagora Editrice, Bologna, 1983, 135-165. | MR | Zbl
and ,[19] Quantum connection and Poincaré-Cartan form, Atti del convegno in onore di A. Lichnerowicz, Frascati, octobre 1995; ed. G. Ferrarese, Pitagora, Bologna.
and ,[20] Principles of quantum general relativity, World Scientific, Singapore, 1995. | MR
,[21] Quantum mechanics in non-inertial frames of reference, Fortschritte der Physik, 25 (1977), 37-82. | MR
and ,[22] Geometric quantization and quantum mechanics, Springer-Verlag, New York 1980. | Zbl
,[23] Structures des systèmes dynamiques, Dunod, Paris 1970. | MR | Zbl
,[24] Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sc. Paris, t. 257 (1963), 617-620. | MR | Zbl
,[25] Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity (Essays in Honour of V. Hlavaty), n. 42, Indiana Univ. press, 1966, 413-425. | MR
,[26] An intrinsic formulation of nonrelativistic analytical mechanics and wawe mechanics, J. Geom. Phys., 2, n. 3 (1985), 93-105. | MR | Zbl
,[27] Spherical symmetry in classical and quantum Galilei general relativity, Annales de l'Institut Henri Poincaré, 64, n. 2 (1996). | Numdam | MR | Zbl
,[28] Bicomplessi lagrangiani ed applicazioni alla meccanica relativistica classica e quantistica, PhD Thesis, Florence, 1996.
,[29] Quantum structures in general relativistic theories, Proc. of the XII It. Conf. on G.R. and Grav. Phys., Roma, 1996, World Scientific. | MR
,[30] Differential Analysis on Complex Manifolds, GTM, n. 65, Springer-Verlag, Berlin, 1980. | MR | Zbl
,[31] Geometric quantization, Second Ed., Clarendon Press, Oxford 1992. | MR | Zbl
,