@article{AIHPA_1996__64_2_177_0, author = {Vitolo, Raffaele}, title = {Spherical symmetry in classical and quantum {Galilei} general relativity}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {177--203}, publisher = {Gauthier-Villars}, volume = {64}, number = {2}, year = {1996}, mrnumber = {1386216}, zbl = {0854.53071}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1996__64_2_177_0/} }
TY - JOUR AU - Vitolo, Raffaele TI - Spherical symmetry in classical and quantum Galilei general relativity JO - Annales de l'I.H.P. Physique théorique PY - 1996 SP - 177 EP - 203 VL - 64 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1996__64_2_177_0/ LA - en ID - AIHPA_1996__64_2_177_0 ER -
Vitolo, Raffaele. Spherical symmetry in classical and quantum Galilei general relativity. Annales de l'I.H.P. Physique théorique, Tome 64 (1996) no. 2, pp. 177-203. http://www.numdam.org/item/AIHPA_1996__64_2_177_0/
[1] On manifolds with an affine connection and the theory of general relativity, Bibliopolis, Napoli, 1986. | MR | Zbl
,[2] Structured bundles, Pitagora, Bologna, 1990.
, , and ,[3] Quantum mechanics of spin particle in a curved spacetime with absolute time, to appear in Rep. Math. Phys. | Zbl
, and ,[4] Bargmann structures and Newton-Cartan theory, Phys. Rev. D, Vol. 31, No 8, 1985, pp. 1841-1853. | MR
, , and ,[5] Minimal gravitational coupling in the Newtonian theory and the covariant Schrödinger equation, G.R.G., Vol. 16, No. 4, 1984, pp. 333-347. | MR
and ,[6] Riemannian Geometry, II ed., Springer Verlag, Berlin, 1990. | MR | Zbl
, and ,[7] The large scale structure of space-time, Cambridge University Press, Cambridge, 1973. | MR | Zbl
and ,[8] Remarks on symplectic forms in general relativity, 1993, to appear.
,[9] A scheme for Galilei general relativistic quantum mechanics, in Proceedings of the 10th Italian Conference on General Relativity and Gravitational Physics, World Scientific, New York, 1993. | Zbl
and ,[10] Galilei General Relativistic Quantum Mechanics, 1993, book preprint. | MR
and ,[11] Dirac field on Newtonian spacetime, Ann. Inst. H. Poinc., Vol. 41, No. 4, 1984, pp. 363-384. | EuDML | Numdam | MR | Zbl
and ,[12] Riemannian Geometry, de Gryter Studies in Math. 1, de Gruyter, Berlin, 1982. | MR | Zbl
,[13] Foundations of Differential Geometry, Vol. I, Interscience, New York, 1963. | MR | Zbl
and ,[14] Gravitation, geometry and nonrelativistic quantum theory, Phys. Rev. D., Vol. 22, No. 6, 1980, pp. 1285-1299. | MR
,[15] General covariance and minimal gravitational coupling in Newtonian spacetime, in Geometrodynamics Proceedings, 1983, A. Prastaro ed., Tecnoprint, Bologna, 1984, pp. 37-48. | MR
,[16] Differential Manifolds, Addison-Wesley, Reading (Ma), 1972. | MR | Zbl
,[17] Fibered Spaces, Jet Spaces and Connections for Field Theories, in Proceed of Int. Meet. on Geometry and Physics, Pitagora ed., Bologna, 1983, pp. 135-165. | MR | Zbl
and ,[18] Quantum geometry. A Framework for quantum general relativity, Kluwer Academic Publishers, 1992. | MR | Zbl
,[19] On the general covariance and strong equivalence principles in quantum general relativity, preprint, 1993. | MR
,[20] The Topology of Fibre Bundles, Princeton Univ. press, 1951. | MR | Zbl
,[21] General Relativity and Cosmology, Bull. of Amer. Math. Soc., Vol. 83, 1976, pp. 1101-1164. | MR | Zbl
and ,[22] Sur la théorie Newtonienne de la gravitation, C. R. Acad. Sci. Paris, Vol. 257, 1963, pp. 617-620. | MR | Zbl
,[23] Comparison of Newtonian and relativistic theories of space-time, in Perspectives in geometry and relativity (Essays in Honour of V. Hlavaty, No 42, Indiana Univ. press, 1966, pp. 413-425. | MR
,