@article{AIHPA_1994__61_2_135_0, author = {Ozawa, T.}, title = {Local decay estimates for {Schr\"odinger} operators with long range potentials}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {135--151}, publisher = {Gauthier-Villars}, volume = {61}, number = {2}, year = {1994}, mrnumber = {1311061}, zbl = {0812.35111}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1994__61_2_135_0/} }
TY - JOUR AU - Ozawa, T. TI - Local decay estimates for Schrödinger operators with long range potentials JO - Annales de l'I.H.P. Physique théorique PY - 1994 SP - 135 EP - 151 VL - 61 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1994__61_2_135_0/ LA - en ID - AIHPA_1994__61_2_135_0 ER -
Ozawa, T. Local decay estimates for Schrödinger operators with long range potentials. Annales de l'I.H.P. Physique théorique, Tome 61 (1994) no. 2, pp. 135-151. http://www.numdam.org/item/AIHPA_1994__61_2_135_0/
[1] Configuration space properties of the S-matrix and time delay in potential scattering, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 47, 1987, pp. 367-382. | Numdam | MR | Zbl
, , ,[2] An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 39, 1983, pp. 385-392. | Numdam | MR | Zbl
,[3] Local time-decay of high energy scattering states for the Schrödinger equation, Math. Z., Vol. 188, 1984, pp. 125-142. | MR | Zbl
, ,[4] Long range scattering for non linear Schrödinger and Hartree equations in space dimension n ≥ 2, Commun. Math. Phys., Vol. 151, 1993, pp. 619-645. | MR | Zbl
, ,[5] Time decay for some Schrödinger equations, Math. Z., Vol. 200, 1989, pp. 467-483. | MR | Zbl
, ,[6] Lower bounds for order of decay or of growth in time for solutions to linear and non-linear Schrödinger equations, Publ. RIMS, Kyoto Univ., Vol. 25, 1989, pp. 847-859. | MR | Zbl
, ,[7] Spectral theory of the operator (p2 + m2)1/2 - Ze2/r, Commun. Math. Phys., Vol. 53, 1977, pp. 285-294. | MR | Zbl
,[8] Decay rates of scattering states for Schrödinger operators, J. Math. Kyoto Univ., Vol. 26, 1986, pp. 595-603. | MR | Zbl
,[9] Spectral properties of Schrödinger operators and time-decay of the wave functions, Results in L2 (Rm), m ≥ 5, Duke Math. J., Vol. 47, 1980, pp. 57-80. | MR | Zbl
,[10] Propagation estimates for Schrödinger type operators, Trans. Amer. Math. Soc., Vol. 291, 1985, pp. 129-144. | MR | Zbl
,[11] Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J., Vol. 46, 1979, pp. 583-611. | MR | Zbl
, ,[12] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 41, 1984, pp. 207-225. | Numdam | MR | Zbl
, , ,[13] Mapping properties of wave and scattering operators for two-body Schrödinger operators, Letters in Math. Phys., Vol. 24, 1992, pp. 295-305. | MR | Zbl
, ,[14] Configuration space properties of the scattering operator and time delay for potentials decaying like |x|-α, α > 1, Ann. Inst. Henri Poincaré, Physique Théorique, Vol. 57, 1992, pp. 89-113. | Numdam | MR | Zbl
, , ,[15] Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Anal., Vol. 49, 1982, pp. 10-56. | MR | Zbl
,[16] Long range scattering for nonlinear Schrödinger equations in one space dimension, Commun. Math. Phys., Vol. 139, 1991, pp. 479-493. | MR | Zbl
,[17] Scattering theory by the Enss method, Math. Reports, Vol. 1, 1983, pp. 1-347. | MR | Zbl
,[18] Methods of Modern Mathematical Physics III. Scattering Theory, Academic Press, New York, 1979. | MR | Zbl
, ,[19] Spectral properties of the Schrödinger operator with a potential having a slow falloff, Funct. Anal. Appl., Vol. 16, 1982, pp. 280-286. | MR | Zbl
,[20] The low energy scattering for slowly decreasing potentials, Commun. Math. Phys., Vol. 85, 1982, pp. 177-196. | MR | Zbl
,