@article{AIHPA_1983__39_4_385_0, author = {Cycon, Hans L.}, title = {An upper bound for the local time-decay of scattering solutions for the {Schr\"odinger} equation with {Coulomb} potential}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {385--392}, publisher = {Gauthier-Villars}, volume = {39}, number = {4}, year = {1983}, mrnumber = {733689}, zbl = {0538.35025}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1983__39_4_385_0/} }
TY - JOUR AU - Cycon, Hans L. TI - An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential JO - Annales de l'I.H.P. Physique théorique PY - 1983 SP - 385 EP - 392 VL - 39 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1983__39_4_385_0/ LA - en ID - AIHPA_1983__39_4_385_0 ER -
%0 Journal Article %A Cycon, Hans L. %T An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential %J Annales de l'I.H.P. Physique théorique %D 1983 %P 385-392 %V 39 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1983__39_4_385_0/ %G en %F AIHPA_1983__39_4_385_0
Cycon, Hans L. An upper bound for the local time-decay of scattering solutions for the Schrödinger equation with Coulomb potential. Annales de l'I.H.P. Physique théorique, Tome 39 (1983) no. 4, pp. 385-392. http://www.numdam.org/item/AIHPA_1983__39_4_385_0/
[1] Scattering theory in Quantum Mechanics, Benjamin, Reading, Mass, 1977. | MR | Zbl
, , ,[2] Absence of singular continuous spectrum for two body Schrödinger operators with long-range potentials (a new proof). Proc. of Roy. Soc. of Edinburgh, t. 94 A, 1983, p. 61-69. | MR | Zbl
,[3] Quantum mechanical scattering theory for short-range and Coulomb interactions, Rocky Mountain J. of Math., t. 1, n° 1, 1971, p. 5-88. | MR | Zbl
,[4] Local decay in time of solutions to Schrödinger's equation with a dilatation-analytic interaction, manuscripta math., t. 25, 1978, p. 61-77. | MR | Zbl
,[5] Spectral properties of Schrödinger operators and time-decay of the wave functions; results in L2(Rm), m ≥ 5, Duke Math. J., t. 47, n° 1, 1980, p. 57-80. | MR | Zbl
,[6] Spectral properties of Schrödinger operators and time decay of the wave functions, Duke Math. J., t. 46, n° 3, 1979, p. 583-611. | MR | Zbl
, ,[7] Perturbation theory for linear operators, Berlin, Heidelberg, New York, Springer, 1966. | MR | Zbl
,[8] Time decay of the high energy part of the solutionfor a Schrödinger equation, preprint University of Tokyo, 1982. | MR
,[9] Scattering solutions decay at least logarithmically, Proc. Jap. Ac., t. 54, Ser. A, 1978, p. 42-45. | MR | Zbl
,[10] Local decay of Scattering solutions to Schrödinger's equation, Comm. Math. Phys., t. 61, 1978, p. 149-168. | MR | Zbl
,[11] Methods of modern mathematical physics III, Scattering theory, Acad. press, 1979. | MR | Zbl
, ,[12] Methods of modern mathematical physics IV. Analysis of operators, Acad. press, 1978. | MR | Zbl
, ,