@article{AIHPA_1987__47_3_309_0, author = {Blanchard, Ph. and Stubbe, J. and V\'azquez, L.}, title = {On the stability of solitary waves for classical scalar fields}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {309--336}, publisher = {Gauthier-Villars}, volume = {47}, number = {3}, year = {1987}, mrnumber = {921309}, zbl = {0649.35076}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1987__47_3_309_0/} }
TY - JOUR AU - Blanchard, Ph. AU - Stubbe, J. AU - Vázquez, L. TI - On the stability of solitary waves for classical scalar fields JO - Annales de l'I.H.P. Physique théorique PY - 1987 SP - 309 EP - 336 VL - 47 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1987__47_3_309_0/ LA - en ID - AIHPA_1987__47_3_309_0 ER -
%0 Journal Article %A Blanchard, Ph. %A Stubbe, J. %A Vázquez, L. %T On the stability of solitary waves for classical scalar fields %J Annales de l'I.H.P. Physique théorique %D 1987 %P 309-336 %V 47 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1987__47_3_309_0/ %G en %F AIHPA_1987__47_3_309_0
Blanchard, Ph.; Stubbe, J.; Vázquez, L. On the stability of solitary waves for classical scalar fields. Annales de l'I.H.P. Physique théorique, Tome 47 (1987) no. 3, pp. 309-336. http://www.numdam.org/item/AIHPA_1987__47_3_309_0/
[1] Constrained minimization problems in Orlicz-spaces with application to minimum action solutions of non-linear scalar field equations in RN. Bielefeld University, BI-TP 86/10, 1986.
,[2] Stable Standing waves of Nonlinear Klein-Gordon equations. Comm. Math. Phys., t. 91, 1983, p. 313-327. | MR | Zbl
,[3] Instability of nonlinear bound-States. Comm. Math. Phys., t. 100, 1985, p. 173-190. | MR | Zbl
and ,[4] Existence of solitary waves in higher dimensions. Comm. Math. Phys., t. 55, 1977, p. 149-162. | MR | Zbl
,[5] Nonlinear Scalar Field Equations. I. Arch. Rat. Mech. Anal., t. 82, 1983, p. 313-345. | MR | Zbl
and ,[6] Minimum Action Solution of some Vector field equation. Comm. Math. Phys., t. 96, 1984, p. 97-113. | MR | Zbl
and ,[7] Low energy scattering for nonlinear Klein-Gordon equations, preprint. | MR
,[8] On weak solutions of semilinear hyperbolic equations. An. Acad. brasil. Cienc., t. 42, 1970, p. 645-651. | MR | Zbl
,[9] Non-linear evolution equations: Cauchy problem and scattering theory, BIBOS preprint 102/85, Bielefeld, 1985.
and ,[10] On a class of Nonlinear Schrödinger equations. I. The Cauchy problem, General case. J. Funct. Anal., t. 32, 1979, p. 1-32. | MR | Zbl
and ,[11] Équations d'évolution avec non linéarité logarithmique. Aunals. Fac. Sci. Univ. Toulouse, t. 2, 1980, p. 21-55. | Numdam | MR | Zbl
and ,[12] Nonlinear Evolution Equations. Global Behaviour of Solutions. Lecture Notes in Mathematics, t. 841, Springer, Berlin, 1981. | MR | Zbl
,[13] Classical confinement: field theories with spontaneously bounded domains. Had. J., t. 3, 1980, p. 1333-1359. | MR | Zbl
,[14] Dilation Covariance and Exact Solutions in Local Relativistic Field Theories. Phys. Rev., t. 183, 1969, p. 1186-1188.
,[15] Wave Equations with Logarithmic Non-linearities. Bull. Acad. Pol. Sci. Cl. II., t. 23, 1975, p. 461-466. | MR
and ,[16] Classical Theory of Klein-Gordon equations with logarithmic non-linearities. Can. Journ. Phys., t. 56, 1978, p. 1405-1411. | MR | Zbl
,[17] Nonlinear Wave Mechanics, Ann. of Phys., t. 100, 1976, p. 62-93. | MR
and ,[18] Resonances within nonperturbative methods in field theories. Phys. Rev., t. D 14, 1975, p. 1056-1059.
and ,[19] Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys., t. 87, 1983, p. 567-576. | MR | Zbl
,[20] Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon nonlinéaires. C. R. Acad. Sc. Paris, t. 293, 1981, p. 489-492. | MR | Zbl
and ,[21] Orbital Stability of Standing waves for some Nonlinear Schrödinger Equations. Comm. Math. Phys., t. 85, 1982, p. 549-561. | MR | Zbl
and ,[22] Lyapunov Stability of Ground States of Nonlinear Dispersive Evolution equations. Comm. Pure Appl. Math., t. 39, 1986, p. 51-67. | MR | Zbl
,[23] Stable solutions of the logarithmic Schrödinger equation. Nonlinear Analysis TMA, t. 7, 1983, p. 1127-1140. | MR | Zbl
,[24] Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math., t. 57, 1977, p. 93-105. | MR | Zbl
,[25] On a class of nonlinear Schrödinger equation with nonlocal interaction. Math. Zeitschrift, t. 170, 1980, p. 109-136. | MR | Zbl
and ,[26] On the stability of nonlinear spinor fields, Phys. Rev. D, to appear.
, and ,[27] Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys., t. 5, 1964, p. 1252-1254. | MR
,[28] Modulational stability of Ground states of nonlinear Schrödinger Equations. Siam J. Math. Anal., t. 16, 1985, p. 472-491. | MR | Zbl
,[29] Stability Theory of Solitary Waves in the Presence of Symmetry, I. J. Funct. Anal., t. 74, 1987, p. 160-197. | MR | Zbl
, and ,