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ABSTRACT. 2014 We study the stability for the bound states of lowest
action of certain nonlinear Klein-Gordon and Schrodinger equations by
applying the Shatah-Strauss formalism. We extend the range of appli-
cation of this formalism by using a recent existence theorem for minimum
action solutions to a large class of equations including logarithmic Klein-
Gordon and logarithmic Schrodinger equations and scalar field equations
with fractional nonlinearities.

Furthermore we discuss the relation between different stability criteria
considered in the literature.

RESUME. - On etudie la stabilite des etats lies d’action minimale de
certaines equations de Klein-Gordon et de Schrodinger non lineaires en
appliquant Ie formalisme de Shatah et Strauss. On etend Ie domaine de
validite de ce formalisme par 1’utilisation d’un theoreme recent d’existence
de solutions d’action minimale pour une classe etendue d’equations, compre-
nant les equations de Klein-Gordon et de Schrodinger logarithmiques et
les equations de champs scalaires avec des non linearites sous-lineaires.
En outre, on discute les relations entre divers criteres de stabilite consideres
dans la litterature.
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310 PH. BLANCHARD, J. STUBBE AND L. VAZQUEZ

0 . INTRODUCTION

In the study of solitary waves we have to consider three main steps :
the existence, the stability and the general evolution problem.

In the last ten years interesting results have been obtained for the three
problems, which will be detailed below. Concerning the existence pro-
blem one of us recently proved the existence of solitary waves having
lowest energy for scalar fields with logarithmic and fractional nonlinea-
rities [1 ].
Now our purpose is to study the stability of such solitary waves of the

nonlinear Klein-Gordon equation

and the nonlinear Schrödinger equation

by applying the Shatah-Strauss formalism [2] ] [3 ].
By a solitary wave we mean a solution of the form

with a~ real and being in a suitable function space, i. e. 4&#x3E; is a standing
wave with frequency a~. Stability has to be understood in the following
sense : Let (~(0, x) = initial value close to the standing wave solu-
tion with respect to a certain function space metric then ~(x, t ) remains
close to for all t &#x3E; 0 with respect to this metric. Otherwise we
call unstable.
Our paper is organized as follows :
In Section I we summarize the existence results and introduce the nota-

tions we need.
In Section II we consider the stability and instability criteria. We recall

the results of Shatah and Strauss which naturally also hold in the cases
we investigate.

In Section III we derive general classifications for stability and instabi-
lity from the general formalism and present a few examples, e. g. fractional
nonlinearities, the logarithmic Klein-Gordon equation and logarithmic
Schrodinger equation which are treated for the first time within this general
framework.

Finally, in Section IV, we discuss the relations between different stability
criteria. Especially we put the linearized operator into the context of
Shatah-Strauss formalism.

Annales de l’Institut Henri Poincaré - Physique theorique
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1. EXISTENCE OF NONTRIVIAL STANDING WAVES

Consider the nonlinear Klein-Gordon equation

This equation has nontrivial standing wave solutions ~(x, t ) = 

provided that

where + has a nontrivial solution. Especially we are
interested in finding solutions having least energy among all possible
(nontrivial) solutions of (*). The existence of such a « ground state » was
proven by Strauss [4 ], generalized by Berestycki and Lions [5] ] and extended
to more general nonlinearities recently by Stubbe [1 ]. We require gw(u)
to satisfy the hypotheses of [1 ] .
We assume that ~: [? -~ [R is odd and that geC(~)nC~B{0}).
Furthermore g and g03C9 satisfy the following conditions :

(1.3) There exists ç = ç(w) such that

We emphasize that the limit in (1.1) is allowed to be infinite which yields
the difference to the existence conditions in the work of Berestycki and
Lions [4] who required the nonlinearity to have a finite derivative at the
origin. Therefore in our case the functional

does not have to be well-defined on In [7] it was shown that 
is well-defined and of class C1 on the subspace

Indeed, W is a reflexive Banach space.

Vol. 47, n° 3-1987.



312 PH. BLANCHARD, J. STUBBE AND L. VAZQUEZ

With the help of this framework one solves the following constrained
minimization problem

where

from which one derives the existence of a minimum action solution of
the field equation (*), i. e. a solution which minimizes the action

among all possible solutions of the field equation.
In this section we want to put this existence result into the context

of the nonlinear Klein-Gordon equation and of the Shatah-Strauss for-
malism [2] ] [3 ].
For this purpose we need the following functionals and sets :
There are three important physical quantities for solutions of the NLKG

with

For standing waves we have

Then we will use the abbreviations

Furthermore we need the functional

and the set

where ’ Wr denotes the space ’ of radial functions in W.

Annales de l’Institut Henri Poincaré - Physique ’ theorique ’
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It is easy to see that Mro is a C1 hypersurface in Wr bounded away from zero
(easy extension of Lemma 1.1 in [2 ]).

Furthermore by the virial theorem or Pohozaev identity (see [4] ] [6] for
a proof) each solution Uro of the field equation satisfies :

Now we state our existence theorem in analogy to Theorem 1.1 of Sha-
tah [2 ] :

THEOREM 1.1.

is achieved for some 0 and

Furthermore, if = M E W, = 1 } then is achieved
for some 0 and we have the relations

In addition Uro satisfies the field equation

Proof First we show the equivalence of the first two minimization
problems.

Let v1 E Wr such that &#x3E; 0. v03C3 = satisfies

Thus, if 6 = 60 - N - 2 2014T2014 , , we have = 0 and since
B 2N 

0  60  1 the inequality

3-1987.



314 PH. BLANCHARD, J. STUBBE AND L. VAZQUEZ

holds. Since = - T(u) + - then

Now we prove the relation between and 

Let v E Wr such that = 0. For 6 = - T(v) Nv03C3 satisfies
= 1. Thus B 2N /

which implies

On the other hand if v E Wr such that = 1 we choose

But

which gives

Applying the existence result of [1] ] there is an Uro E Wr such that
= and 1. Furthermore in [7] ] it is shown that
= has least action among all functions satisfying
= 0. Thus N = d(cv) and in addition Uro satisfies the field

equation.

REMARK 1.2. - Alternatively one can solve directly the minimization
problem for as Shatah [2] did. The extension to nonlinearities satisfying
condition (1.1) is an easy application of the results presented in [1 ].

Annales de l’Institut Henri Poincaré - Physique theorique



315ON THE STABILITY OF SOLITARY WAVES FOR CLASSICAL SCALAR FIELDS

REMARK 1. 3. - In addition it can be shown that

i. e. the solution set of = inf Sú)(u) is also the solution set of
uEMu,

REMARK 1.4. - Uniqueness of the minimum action solution is
not known in general. Nevertheless we assume that there is a choice uw
achieving the infimum in Theorem 1.1 such that

(~ 

is of class C2. For a proof of this fact under the assumption of uniqueness
and for see [3 ]. is sufficient, but our assumption simplifies
the presentation. At least it is valid for the examples considered in Section 3.
The search for standing waves of the nonlinear Schrodinger equation

leads to

where = f(u) + x)M. We require to satisfy the same hypotheses
as ~o(~). Then also Theorem 1.1 holds. ( ,

The relevant quantities for (NLS) are

and therefore we have

2. STABILITY AND INSTABILITY CRITERIA

The main purpose of this section is to recall the results of Shatah and
Strauss [3].

Since their formalism essentially depends on the minimum property
Vol. 47, n° 3-1987.



316 PH. BLANCHARD, J. STUBBE AND L. VAZQUEZ

of resp. uw(x) in a suitable function space and on the definiteness
of certain functional most of the work to implement their formalism
has abready been done in Section I.
Furthermore we restrict ourselves to the NLKG unless otherwise stated.

2.1. Properties of d(cv).

We recall the properties of which will be useful for the stability
analysis.

LEMMA 2.1. - Assume that a&#x3E; &#x3E; 0 and gw satisfies the conditions which

garantee the existence of a ground state solution. Then d(c~) is a positive
decreasing function of wand its derivative is given by

Proof. - d(m) = = EjHj - cvQw(uw). Therefore

THEOREM 2. 2. - is convex at ccy if and only if E(u, v) restricted
to the manifold

has a local minimum at 

Proof (see [3 D. Since E(u, v) &#x3E;_ + v) we have

for any (u, v) nearby and suitable c~.

If is convex the above inequality implies

)y/~
Conversely consider the family ~(~)=~(~(~)) with 6(a~) _ .
Then = and Q~’(u~’)

Annales de l’Institut Henri Physique theorique



317ON THE STABILITY OF SOLITARY WAVES FOR CLASSICAL SCALAR FIELDS

But by assumption

which implies the convexity of at 

REMARK 2 . 3. - For the Schrodinger equation the inequality for E(u, v)
is replaced by the equality

A simple consequence of Theorem 2.2 is the following

COROLLARY 2.4. - a) If is strictly concave at then E, subject
to the constraint Q = does not have a local minimum at uroo
and in particular  for co nearby a~o and cvo.

Finally we observe the following interesting property of ~(a)):
_ 

2

COROLLARY 2 . 5. - is an increasing convex function of a~.

Proof - Since is decreasing the growth property is immediate.

Now (~~)~)= -~~~ -2N-l( N) and the

proposition is trivial if  0.
Let &#x3E; 0 for some coo. Then by Theorem 2.2 the energy, subject

to the constraint Q = has a local minimum at The curve v~,
used in the proof of theorem 2.2 satisfies

with

At cvo we have

So, upon expanding in power of Aco = CD 2014 we obtain

Vol. 47, n° 3-1987. 12
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which implies

This expression is positive. The proposition follows since d"(cvo) &#x3E; 0,
&#x3E; 0, ~’(~o) ~ O.

2.3. The Evolution equations.

In this subsection we summarize the stability/instability results obtained
by Shatah and Strauss in [3 ].
We consider the Cauchy problems

(NLKG)

with

and

(NLS)

with

There is a wide literature on both problems but restricted to non-

linearities g (resp. f ) having a finite derivative at the origin. Under this
restriction the NLKG was studied by Pecher [7 ], Strauss [8] and Ginibre
and Velo (see e. g. the survey article [9] and references therein).
We know that for NLKG there exists T &#x3E; 0 such that 4&#x3E; E C ([0, T), Wr),

03C6t ~ C ([0, T), L2r) and 03C6 is unique. Furthermore the charge and energy
are conserved quantities, i. e.

for all t E [0,T).
For the NLS the situation is similar if the nonlinearities have a finite

derivative at the origin. This problem was mainly studied by Ginibre and
Velo [9] ] [10 ].

Annales de l’Institut Poincaré - Physique theorique
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Again we know (at least for reasonable nonlinearities) the existence of
a solution which is continuous in Hr and satisfies

for all t E [0, T).
If the nonlinearity has an infinite derivative at the origin the treatment

of NLKG and NLS is much more difficult and we have only partial results :
The Cauchy problem for the logarithmic NLKG and logarithmic NLS
was solved by Cazenave and Haraux [11] ] [72] by « regularizing » the evo-
lution equation. In general we cannot expect to have strong solutions
of the Cauchy problems but we assume that there is always a weak solution
satisfying the energy inequality

resp.

See e. g. Strauss [8 ], where this is proven 0. Strauss and Shatah
studied the behaviour of the set K = { in Hr E9 Lr under
the flow governed by NLKG (resp. K in H~ for NLS). Their
analysis also applies in our case for the space Wr E9 Lr (resp. Wr).
The behaviour of K depends on in the following way :

THEOREM 2.7.

a) If  0 then K is unstable

b) If &#x3E; 0 then K is stable

For a proof we refer to the papers of Shatah and Strauss [2] ] [3 ].
In the next section we derive general classifications for stability and insta-

bility and apply theorem 2.7 to different models in physics.

3. APPLICATIONS

At the beginning of this section we will present general classifications
for stability/instability regions in relation to the existence conditions for
standing waves. We restrict ourselves to NLKG but similar results also
hold for NLS.

Let c5 &#x3E; a~* &#x3E;_ 0 and (c~*2, ci~2) be the maximal interval of frequencies co
for which gro satisfies the conditions (1.1)-(1.4). Note that if c~* = 0 the
left hand side of this interval may be closed. This case will be treated later.

If the interval is open then does not satisfy ( 1. 3) does not

satisfy ( 1.1 ).

Vol. 47, n° 3-1987.
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We consider the standing wave equation

Then we have the following

THEOREM 3.1. - There exists co* such that &#x3E; 0.

Proof Theorem 3.1 is an easy consequence of

PROPOSITION 3.2.

Proof of Prop. 3.2. - We prove the proposition by contradiction.
Assume that d(cv) remains bounded as ~ -~ c~* then !! uw I Iw is bounded
where denotes the norm of W introduced in [1 ].

Since W is reflexive there exists a sequence cv* and v E Wr such
that weakly in Wr .
Now we have

On the other hand &#x3E; 0 for all u E Wr, u --_ 0 and therefore v = 0
which implies ~ 0 strongly in Wr. Since d(cv) is monotone decreasing
we have

which yields the desired contradiction.
As a consequence there exist stable standing waves for a~ close to co*.
The next theorem is related to the case where a zero frequency solution

exists. This result was also proven by Shatah and Strauss [3 ].

THEOREM 3.3. - If = 0 and go satisfies condition (1.3), then

d"(co)  0 for co close to zero. 
r _

Thus the zero frequency solution of NLKG is always unstable.
For cc~ close to c5 the situation is much more difficult. The only result

we have is

Annales de l’Institut Henri Poincaré - Physique theorique
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THEOREM 3.4. - Let  be infinite; then there exists oo such that

Proof First let us remark that c5 is infinite if the derivative of g03C9 at zero
is infinite.
Now we have li m = 0 by Proposition 2. 5.
Since &#x3E; 0, d’(cv)  0 the Theorem follows. (d cannot be concave

everywhere).
If  is finite a lot of possibilities can occur which depend on the special

structure of the nonlinearity as will be seen in the examples.
Finally let us remark that in many applications there exists an a~~ such

that = 0 and  0 for co arbitrarily close to Then 03C9c must
be an unstable frequency since the set of stable frequencies is open.

31. Examples: Nonlinear Klein-Gordon equations.

We start with an example which was already discussed by Shatah and
Strauss [2] ] [3] but we repeat it for the sake of completeness.

PROPOSITION 3. 5. - The equation

has both stable and unstable standing waves for 1  p  1 + 2014. If
4 N

~ &#x3E; 1 + 2014 all standing waves are unstable.

Proof. u~, satisfies

with cv2 E (0,1). Now we define

Then v satisfies

and thus ’

-

where .. = - - 
-2 

&#x3E; O. Calculating the second o derivative of ,
yields p-l

CASE 1. - If /? &#x3E;: 1 + 2014 
then a  1, is concave and Uro is always

unstable.

Vol. 47, n° 3-1987.
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CASE 2. - If p  1 + 2014, d" ~ cc~ ) changes sign at (2ac - 1)’~. .

u03C9 is stable for 03C9c  |03C9|  1 and unstable for  

If p  1 + __ we see that for given charge Q  there exist two

solitary waves, a stable and a unstable one. ,

Next we consider a nonlinear Klein-Gordon equation with a fractional
nonlinearity, i. e.

Such models were proposed as an example for a classical field theory
with « spontaneously bounded domains » [13 ]. Indeed, the state of lowest
energy with frequency 03C9, which exists if 03C92 &#x3E; m2, is spherically symmetric
and confined to a finite volume of f~N [1 ].
We find

PROPOSITION 3. 6. - All standing waves of

are stable.

Proof.

satisfies

where ~, = (a~2 - m2)1~2. Therefore

- 2 1
where (X = - - + -  0 which implies that is always strictly
convex. 

2 ~ ~ 1

An important model is the logarithmic Klein-Gordon equation

which was often investigated [7~] ] [7~] ] [16 ].
Standing waves exist for all cc~ E [R. The states of lowest energy obtained

by theorem 1.1 are explicitly given by

and they are unique [77].
We state the following:

Annales de l’Institut Henri Poincaré - Physique théorique
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PROPOSITION 3.7. - The logarithmic Klein-Gordon equation admits
both stable and unstable standing waves, more precisely

a) If 03C92 &#x3E; k/2 then Uro is stable

b) If cv2  k/2 then Uro is unstable

Proof. Obviously = exp ( - 03C92 k)d(0).
Differentiating twice yields

which proves the proposition.
For given charge Q  there exist two solitary waves with

different energy. The state of lower energy is stable, while the other is
unstable.
The same result was obtained by Marques and Ventura investigating

the linearized stability equation [18]. They also gave an interpretation of
the unstable states considering them as resonances.

Finally we consider an example illustrating how to get informations at
the right hand side of the existence range for standing waves:

were 8 &#x3E; 0 ’ 1  p  q  N - N + 2 2. For 8 large enough the mterval (cv , * 1)is nonempty. 
N - 2

By Theorem 3.1 there exist stable standing waves for co close to 

PROPOSITION 3.8.

a ) If p  1 + 4 N there are stable standing waves for co close to 1.

b ) standing waves are unstable for cv close to 1.

Proof - Uro satisfies - (1 - + uq03C9 therefore

v(x) = 03BB-2 p-1v03C9(x/03BB), 03BB=(1-03C92)1 2 satisfies - 0394v= -v+~vp-(1-03C92)q-p vq
q-1

which implies that - (1 - 03C92)03B1, a - 2 - N - 2 for 03C9 close to 1
p- 1 2

Vol. 47, n° 3-1987.
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3.2. Examples: Nonlinear Schrodinger equations.

Again we start with an example considered by Strauss and Shatah .

PROPOSITION 3.9. - For the equation

4
all standing waves u03C9 

are stable if p  1 + N and all standing waves are
unstable if p &#x3E; 1 + 2014.

Proof - Let 03C603C9(x, t ) =  0.

Again we calculate d((D) explicitly :

which implies

and we conclude using Theorem 2. 7.
4

For the limiting case p = 1 + - we obtain d(03C9) = ( - and Theo-
N

rem 2 . 7 does not apply. But these solutions are unstable as proved i~.[19].
The instability result when p &#x3E; 1 + 4 was first obtained in [ 20 ] while

N

the stability result was also proven by a compactness method [21 ]. Wein-
stein [22] proved the above stability result by a spectral analysis of the
linearized (about u03C9) Schrodinger operators in dimension N = 3.
The logarithmic Schrodinger equation

has standing waves of least energy

for all co E The following proposition is easily proven by using the above
representation of 

PROPOSITION 3 .10. - Uro is stable for all cv.

This result was also obtained by Cazenave using compactness
methods [23]..

Finally we consider an example which is not related directly to the
framework presented in this paper, but which allows also an explicit

Annales de l’Institut Poincaré - Physique theorique
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calculation of d(a~), namely the so called Pekard-Choquard (or Hartree)
equation

Standing ’ waves satisfy the stationary eouation (cv &#x3E; ’

The minimization problem was solved by Lieb [24 ]. For each cc&#x3E; &#x3E; 0
there exists which satisfies the above equation and has least
energy among all possible solutions.
The Cauchy problem was studied by Ginibre and Velo [25 ] : for each

4&#x3E;0 E there exists a unique solution 4&#x3E; E H1(I~3)). In addition,
charge and energy are conserved quantities for this solution.
One can verify that the Sahath-Strauss formalism also applies to this

problem and we obtain

PROPOSITION 3.11. - d"(cv) &#x3E; 0 for each a&#x3E; &#x3E; 0 and therefore all

standing waves Uro are stable.

Proo,f: - Since satisfies

we see

which yields the proposition.
The same stability result was obtained by Cazenave and Lions [21] ] using

the concentration compactness principle. ;
Let us remark that this example can also be understood as a special

case of systems, since we can write the Pekard-Choquard equation as the
following system of two equations :

A natural generalization of this problem is to study the stability of the
standing waves solutions for Yukawa2014coupled nucleon and meson
field under the time evolution

VoL47,n°3-1987. 13
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IV SOME REMARKS ABOUT STABILITY CRITERIA

The Shatah-Strauss formalism gives sufficient conditions for stability/
instability of a ground state solution Uro for a scalar field in the sense of
Liapunov as obtained in Theorem 2. 7:

If the action considered as a function of c~, is strictly convex/
concave at c~o then is stable/unstable.
On the other hand in physics there are a lot of different stability criteria

for localized solutions. Especially due to their simplicity the following
criteria have been used by physicists.

1. Linear dynamical stability.

A localized solution is dynamically stable (in the sense of Liapunov) if
small perturbations do not destroy it, i. e. one studies the behaviour of

The first order approximations leads to a linear eigenvalue problem.

2. Energetic Stability.

The standing wave solutions are critical points of the Lagrangian (action)
and critical points of the energy restricted to the manifold of constant
charge. Now by physical intuition one expects that the standing waves
are stable if they are local minima of the energy. Otherwise they should
be unstable.

Now, what are the relations or contact points between these different
stability criteria ?

First we observe that the Shatah-Strauss formalism proves the validity
of a part of the energetic stability. Indeed, by Theorem 2.2 the convexity
of the action (as a functional of the frequency) is equivalent to the fact
that the energy has a local minimum on the manifold of constant charge
and the convexity of the action implies the stability of the considered
standing wave.
On the other hand physicists mostly use the second part of the energy

criterion. Their work can be described in the following way :
Find a suitable curve along which the energy does not have a local mini-

mum in 
In order to illustrate we consider the usual example (prototype curve) :

Annales de l’Institut Henri Poincaré - Physique theorique
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Let u(~,) = then the charge is fixed along the curve u(~,)
and equal to Consider the function

We compute

Since UúJ is a critical point of the energy along u(~,) we have

Calculating the second derivative at ~, = 1 yields

If 
d2E d03BB2|03BB=1 

 0 the energy does not have a local minimum at M~ À.=l

Then the energy criterion states that is unstable.
Observe that all linear terms vanish in the above expression. Therefore

we can write the instability criteria as follows:
If

then u~, is unstable.
If we apply (4.1) to &#x3E; 1 we see that (4.1) is satisfied

if &#x3E; 1 + 
4

Although this result is very impressive it must not be true in general
because we do not know whether a local minimum of energy is a necessary
condition for stability.
We can only conclude 0 but it is not known what happens in

inflection points of d(a~). We expect instability (see Section 3) but this still
remains to be proven in general (see additional remark at the end of the
paper).
Thus the Shatah-Strauss formalism and the energy criterion are « almost »

Vol. 47, n° 3-1987.
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equivalent. This relies on the fact that the convexity of d((D) at ay and
the existence of a local minimum of the energy (with respect to fixed charge)
are equivalent. Let us remark that this property does not hold for general
field theories. For example, in [2~] we prove that for classical nonlinear
spinor fields the convexity of and the local minimum property of the

energy are no longer equivalent. As a consequence for such field theories
thése two stability criteria cannot coincide.
The linear dynamical stability is of course closely related to the ener-

getic stability. The linearized operator is given by

where t~ is the ground state of the nonlinear equation. As observed by
Derrick [25 H acting on L2(L1~N) has at least one negative eigenvalue which

is a co n seque nce o f dilation invariance : w03C9 = r 03B4u03C9 03B4r satisfies

where ( . , . ) denotes the usual scalar product in 
As a consequence of the spatial translation invariance of the nonlinear

problem, the set ( 2014~ ) 1 belongs to the kernel of H. Therefore there
exists a least one spherically symmetric state having a lower energy.

Therefore one could expect instability which is not true in general.
There are two reasons :

First most of the spectrum of the corresponding dynamical problem
(Klein-Gordon-equation) lies on the imaginary axis so that one cannot
conclude that linearized instability implies true stability.

Second the eigenfunction corresponding to the negative eigenvalue
may not be in the tangent space of the manifold Mo at (uwo, and

therefore the quadratic form defined by the constrained second variation
of the energy can be positive definite (i. e. the energy can have a local
minimum on Mo).
To overcome these difficulties Shatah and Strauss invented the « modified

linearized operator » [3 ] :

Then we have

where

Annales de Hertri Poincaré - Physique ’ theorique ’
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Using Corollary 2.4 we see

(4 . 6 a, b) gives the relation between the linear operator T and the Shatah-
Strauss formalism resp. energy criterion.

In the following we are looking for similar relations by direct analysis
of the linearized operators Hand T.
Let (u(03BB); iv(03BB)) be a curve in Wr (B Lr such that u(o) - u03C90 and

t;(0) = = The charge should be fixed along this curve,
i. e. (M(/)), iv(~,)) is a curve in Mo. It is enough to consider u and v as real
valued functions. Then the following proposition holds :

PROPOSITION 4.1. - For E == E(M(~), iv(~,)) we have

and the tangent vectors u(o), v(o) satisfy

Proof. 2014 Since the charge Q(M, fu) = u(~.)v(~.)dx is fixed we have
JMN

which implies (4.9) and

Then we compute

from which we easily verify (4.7) and (4.8) using the relations for the
derivations of the charge at ~, = 0.
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Defining

we rewrite (4.8) and (4.9) as tollows

We see that the second derivative in i03C90u03C90) is given by a qua-
dratic form in Lr 0 Now the energy has a local minimum in Mo at

iff the quadratic form given by (4.10) is positive under the
constraint (4 .11 ).
For a detailed analysis of this problem we assume that the linearized

operator H satisfies the following condition :

All zero modes of H are generated by spatial translation invariance
(H) of the non linear problem, i. e. the kernel of H is spanned by the

set ----- .

axk /1~N
Furthermore for technical simplicity we restrict ourselves to non-

linearities g(u) which have finite derivatives at the origin.
Let us remark that the validity of condition (H) was proven by M. Wein-

stein in space dimensions N = 1 and N = 3 (at least for special cases) [28 ].
Using condition (H) one can prove the following

PROPOSITION 4.2. - If H satisfies condition (H) then it has exactly
one negative eigenvalue.
A proof of proposition 4 . 2 was also given by M. Weinstein [22] ] [28 ].
Next we prove an estimate for the form given in (4.10) :

PROPOSITION 4 . 3. - Let satisfying (4 .11 ).
Then the following inequality holds

with equality iff x = for some ~ E tR.

Proof Using the Cauchy-Schwartz inequality and (4 .11 ) we obtain
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In view of Proposition 4.3 it is enough to consider the infimum of the
quadratic form defined by T. It is easy to see that

is nonpositive on L since - T - = 0 for 1  k  N.Especially we have 
- -

PROPOSITION 4.4:

a) a = inf ( y, Ty) is attained for an y* E L2.

b) a = 0 iff d"(03C90) ~ 0.

Proof - Let { be a minimizing sequence, i. e. yu) - 1 and
x. Obviously { is bounded in H 1.

Thus there exist y* E H 1 and a subsequence of { (again denoted by
{ yu ~ ) for which

y* weakly in 

By weak convergence ~ ( y*, 
Since V = we obtain by uniform decay of uroo

that (Yu, VYu)  (~ 
For any 8 &#x3E; 0 we can choose n such that

Therefore y* ~ 0 since gw(o)  0 and a  0 and ~ is arbitrary.

By Fatou’s lemma and weak convergence we have

((~ y*) _ 1 and (~y*, V~*)  lim inf and therefore

Suppose ( y*, y*)  1. Then we have

if a  0 which yields a contradiction. If (x &#x3E; 0 we obtain equality. Thus
we can take ( y*, y*) = 1..
For b) we use the fact that y* satisfies the Euler-Lagrange equation

Let &#x3E; 0. It suffices to show a &#x3E; 0. Suppose a  0.
If (y*, = 0 then a is an eigenvalue of H and therefore it must be

the groundstate by proposition 4.2. Thus y* &#x3E; 0 which contradicts the

orthogonality condition (y*, = 0. Therefore ( y*, 0.
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We now consider the function

g((x) is well defined, smooth and increasing on (~,1, 0) where ~,1 denotes the
lowest eigenvalue of H. By (4.13) we need = 0.

Therefore a sufficient condition for g to have no zero on (~.1, 0) is

n ’ .~ , ~..Since -2014 ~~ 
)CD

we obtain

On the other hand if a = 0 then = 0 cannot have a negative root.
Thus we proved proposition 4.4.
Now we are able to investigate what happens in the space of radial

functions.
We state the following.

THEOREM 4.5. There exists a positive constant such that

for any YE Lr

if and only if d"(cco) &#x3E; 0.

Proof Let d"(cco) &#x3E; 0. Then by Proposition 4.4 ( y, Ty) is nonnegative.
We will show that ( y, Ty) is positive on (KerH)B i. e. that (4.18) holds
for all y E L2 which satisfy

Then the first part of Theorem 4.5 is proven since all radial functions
are in the orthogonal complement of Ker H.

Let

We will prove f3 &#x3E; 0 by showing j that the assumption /3 = 0 yields a contra-
diction.
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If 03B2 = 0 one can show as in proposition 4 . 4 that the infimum is attained
by a function y* satisfying

Furthermore g satisfies the Euler Lagrange equation

for some 

Taking the linear product of (4 . 22) with ~u03C90 we see y = 0.
Now, if ( y*, = 0 then y* = ~u03C90 which is impossible. Thus

( y*, 0. But then we have 0 = g(o) = which contradicts the

assumption.
Therefore we conclude /~ &#x3E; 0.
On the other hand let (4.18) hold. Then in particular

which implies &#x3E; 0 by (4 . 6 a).

REMARK 4.6. - In the same way one can show that the condition

implies a  0 (resp. p  0).
Thus we put the linearized operator into the context of the Shatah-Strauss

formalism resp. the energetic criterion.

REMARK 4.7. - Sometimes it is useful to take the representation in
the orthonormal of eigenfunctions of H. Writing = 03A3uiei
we finally obtain ^ , w ,

were 03BBj denote the eigenvalues of H acting on L2r.

REMARK 4.8. - Suppose H possesses two negative eigenvalues. Then
= 0 has always a negative root for a E (~,1, ~2) and therefore the energy

cannot have a local minimum on Mo. Since this result does not despend
on g(o) (resp. the property of Q as a function of 03C9) it looks rather unnatural.
Therefore we conjecture that H always possesses only one negative eigen-
value.

REMARK 4 . 9. - For the NLS a similar analysis was done in the already
mentioned papers of M. Weinstein [22] ] [2~] which yield the same result.
Furthermore the linear evolution is investigated.
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Finally we consider an example to illustrate the abstract framework
(although not covered there) :

EXAMPLE 4 .10. - We consider the logarithmic Klein-Gordon equation

The waves of lowest energy have the fnrm

Formally, the linearized operator is a shifted harmonic oscillator (note
that it does not exist on Wr).

It is obvious that H satisfies condition (H) and there exists an orthonor-
mal base of Lr consisting of eigenfunctions of H.
The ground state of H is given by

with eigenvalue Ål - - 2k. The first excited state on Lr is given by

with eigenvalue ~,2 = 2k.
Now we have

which yields the well-known result.
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Additional Remark. When we finished this paper we got knowledge
of a work concerned with the stability theory of solitary waves by GriHakis,
Shatah and Strauss [29 ]. They investigated an abstract Hamiltonian system
which is invariant under a one-parameter unitary group of operators (the
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gauge group for NLKG and NLS) and obtained the stability/instability
result by an analysis of the linearized operator

where u~, _ [u~" This is a mathematical generalization 0 e

(previous) Shatah-Strauss formalism [2] ] [3 ].
Especially they proved that if u~, is stable then d(cv) must be convex resp.

the energy has a local minimum on the manifold of constant charge.
Therefore there is an equivalence between stability and the local minimum
property of the energy as we claimed in Section 4.
Our mathematical results on the stability partially fit in the framework

presented by Grillakis, Shatah and Strauss [29 ]. On the other hand we

proved the applicability of the theory to a larger class of models. In parti-
cular for fractional or logarithmic nonlinearities does not exist

on Wr and therefore the theory of [29] does not apply.
In addition we presented for the first time a detailed rigorous study of

the linearized operators which may be useful for future applications.
The authors would like to thank Professor W. Strauss for sending us

the preprint of Ref. [29] and some comments on the present paper.

[1] J. STUBBE, Constrained minimization problems in Orlicz-spaces with application to
minimum action solutions of non-linear scalar field equations in RN. Bielefeld Uni-
versity, BI-TP 86/10, 1986.

[2] J. SHATAH, Stable Standing waves of Nonlinear Klein-Gordon equations. Comm.
Math. Phys., t. 91, 1983, p. 313-327.

[3] J. SHATAH and W. STRAUSS, Instability of nonlinear bound-States. Comm. Math.
Phys., t. 100, 1985, p. 173-190.

[4] W. STRAUSS, Existence of solitary waves in higher dimensions. Comm. Math. Phys.,
t. 55, 1977, p. 149-162.

[5] H. BERESTYCKI and P. L. LIONS, Nonlinear Scalar Field Equations. I. Arch. Rat.

Mech. Anal., t. 82, 1983, p. 313-345.

[6] H. BREZIS and E. H. LIEB, Minimum Action Solution of some Vector field equation.
Comm. Math. Phys., t. 96, 1984, p. 97-113.

[7] H. PECHER, Low energy scattering for nonlinear Klein-Gordon equations, preprint.
[8] W. STRAUSS, On weak solutions of semilinear hyperbolic equations. An. Acad. brasil.

Cienc., t. 42, 1970, p. 645-651.
[9] J. GINIBRE and G. VELO, Non-linear evolution equations: Cauchy problem and scattering

theory, BIBOS preprint 102/85, Bielefeld, 1985.
[10] J. GINIBRE and G. VELO, On a class of Nonlinear Schrödinger equations. I. The Cauchy

problem, General case. J. Funct. Anal., t. 32, 1979, p. 1-32.

[11] T. CAZENAVE and A. HARAUX, Équations d’évolution avec non linéarité logarith-
mique. Aunals. Fac. Sci. Univ. Toulouse, t. 2, 1980, p. 21-55.

[12] A. HARAUX, Nonlinear Evolution Equations. Global Behaviour of Solutions. Lecture
Notes in Mathematics, t. 841, Springer, Berlin, 1981.

VoL 47, n° 3-1987.



336 PH. BLANCHARD, J. STUBBE AND L. VAZQUEZ

[13] T. F. MORRIS, Classical confinement: field theories with spontaneously bounded
domains. Had. J., t. 3, 1980, p. 1333-1359.

[14] G. ROSEN, Dilation Covariance and Exact Solutions in Local Relativistic Field Theo-
ries. Phys. Rev., t. 183, 1969, p. 1186-1188.

[15] I. BIALYNICKI-BIRULA and J. MICHIELSKY, Wave Equations with Logarithmic Non-
linearities. Bull. Acad. Pol. Sci. Cl. II., t. 23, 1975, p. 461-466.

[16] T. F. MORRIS, Classical Theory of Klein-Gordon equations with logarithmic non-
linearities. Can. Journ. Phys., t. 56, 1978, p. 1405-1411.

[17] I. BIALYNICKI-BIRULA and J. MICHIELSKY, Nonlinear Wave Mechanics, Ann. of
Phys., t. 100, 1976, p. 62-93.

[18] G. MARQUES and I. VENTURA, Resonances within nonperturbative methods in field
theories. Phys. Rev., t. D 14, 1975, p. 1056-1059.

[19] M. WEINSTEIN, Nonlinear Schrödinger equations and sharp interpolation estimates.
Comm. Math. Phys., t. 87, 1983, p. 567-576.

[20] H. BERESTYCKI and Th. CAZENAVE, Instabilité des états stationnaires dans les équa-
tions de Schrödinger et de Klein-Gordon nonlinéaires. C. R. Acad. Sc. Paris, t. 293,
1981, p. 489-492.

[21] T. CAZENAVE and P. L. LIONS, Orbital Stability of Standing waves for some Nonlinear
Schrödinger Equations. Comm. Math. Phys., t. 85, 1982, p. 549-561.

[22] M. WEINSTEIN, Lyapunov Stability of Ground States of Nonlinear Dispersive Evo-
lution equations. Comm. Pure Appl. Math., t. 39, 1986, p. 51-67.

[23] T. CAZENAVE, Stable solutions of the logarithmic Schrödinger equation. Nonlinear
Analysis TMA, t. 7, 1983, p. 1127-1140.

[24] E. H. LIEB, Existence and uniqueness of the minimizing solution of Choquard’s
nonlinear equation. Stud. Appl. Math., t. 57, 1977, p. 93-105.

[25] G. GINIBRE and G. VELO, On a class of nonlinear Schrödinger equation with nonlocal
interaction. Math. Zeitschrift, t. 170, 1980, p. 109-136.

[26] Ph. BLANCHARD, J. STUBBE and L. VÁZQUEZ, On the stability of nonlinear spinor
fields, Phys. Rev. D, to appear.

[27] G. H. DERRICK, Comments on nonlinear wave equations as models for elementary
particles. J. Math. Phys., t. 5, 1964, p. 1252-1254.

[28] M. WEINSTEIN, Modulational stability of Ground states of nonlinear Schrödinger
Equations. Siam J. Math. Anal., t. 16, 1985, p. 472-491.

[29] M. GRILLAKIS, J. SHATAH and W. STRAUSS, Stability Theory of Solitary Waves in
the Presence of Symmetry, I. J. Funct. Anal., t. 74, 1987, p. 160-197.

(Manuscrit reçu le 25 mars 1987)

Annales de Physique theorique


