@article{AIHPA_1982__36_3_225_0, author = {Klink, W. H. and Ton-That, T.}, title = {Matrix elements and highest weight {Wigner} coefficients of $GL (n, \, \mathbb {C})$}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {225--237}, publisher = {Gauthier-Villars}, volume = {36}, number = {3}, year = {1982}, mrnumber = {664634}, zbl = {0488.22041}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1982__36_3_225_0/} }
TY - JOUR AU - Klink, W. H. AU - Ton-That, T. TI - Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$ JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1982 SP - 225 EP - 237 VL - 36 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1982__36_3_225_0/ LA - en ID - AIHPA_1982__36_3_225_0 ER -
%0 Journal Article %A Klink, W. H. %A Ton-That, T. %T Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$ %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1982 %P 225-237 %V 36 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1982__36_3_225_0/ %G en %F AIHPA_1982__36_3_225_0
Klink, W. H.; Ton-That, T. Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 36 (1982) no. 3, pp. 225-237. http://www.numdam.org/item/AIHPA_1982__36_3_225_0/
[1] Finite-dimensional irreducible representations of the unitary group and the full linear group and related special functions. Izv. Akad. Nauk. S. S. S. R. Ser. Math., t. 29, 1965, p. 1329-1356; English transl., Amer. Math. Soc. Transl., t. 64, 1967, p 116-146. | MR | Zbl
and ,[2] Lett. Math. Phys., t. 3, 1979, p. 315. | MR | Zbl
,[3] Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979. p. 77-79. | Numdam | Zbl
and ,[4] C. R. Acad. Sci., Ser. B, t. 289, 1979, p. 115-118.
and ,[5] Comm. Math. Phys., t. 8, 1968, p. 89; , J. Math. Phys., t. 20, 1979, p. 2391, and references cited therein. It should be noted in these references the multiplicity free Wigner coefficients are computed inductively. | MR
and ,[6] Scientia Sinica, t. 15, n° 6, 1966, p. 763-772. | MR | Zbl
, and , Ann. Inst. H. Poincaré, Ser. A, t.