Matrix elements and highest weight Wigner coefficients of GL(n,)
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 36 (1982) no. 3, pp. 225-237.
@article{AIHPA_1982__36_3_225_0,
     author = {Klink, W. H. and Ton-That, T.},
     title = {Matrix elements and highest weight {Wigner} coefficients of $GL (n, \, \mathbb {C})$},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {225--237},
     publisher = {Gauthier-Villars},
     volume = {36},
     number = {3},
     year = {1982},
     mrnumber = {664634},
     zbl = {0488.22041},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1982__36_3_225_0/}
}
TY  - JOUR
AU  - Klink, W. H.
AU  - Ton-That, T.
TI  - Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1982
SP  - 225
EP  - 237
VL  - 36
IS  - 3
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1982__36_3_225_0/
LA  - en
ID  - AIHPA_1982__36_3_225_0
ER  - 
%0 Journal Article
%A Klink, W. H.
%A Ton-That, T.
%T Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1982
%P 225-237
%V 36
%N 3
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1982__36_3_225_0/
%G en
%F AIHPA_1982__36_3_225_0
Klink, W. H.; Ton-That, T. Matrix elements and highest weight Wigner coefficients of $GL (n, \, \mathbb {C})$. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 36 (1982) no. 3, pp. 225-237. http://www.numdam.org/item/AIHPA_1982__36_3_225_0/

[1] I.M. Gelfand and M.I. Graev, Finite-dimensional irreducible representations of the unitary group and the full linear group and related special functions. Izv. Akad. Nauk. S. S. S. R. Ser. Math., t. 29, 1965, p. 1329-1356; English transl., Amer. Math. Soc. Transl., t. 64, 1967, p 116-146. | MR | Zbl

[2] A.U. Klimyk, Lett. Math. Phys., t. 3, 1979, p. 315. | MR | Zbl

[3] W.H. Klink and T. Ton-That, Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979. p. 77-79. | Numdam | Zbl

[4] W.H. Klink and T. Ton-That, C. R. Acad. Sci., Ser. B, t. 289, 1979, p. 115-118.

[5] L.C. Biedenharn and J.D. Louck, Comm. Math. Phys., t. 8, 1968, p. 89; M.K.F. Wong, J. Math. Phys., t. 20, 1979, p. 2391, and references cited therein. It should be noted in these references the multiplicity free Wigner coefficients are computed inductively. | MR

[6] Hou Pei-Yu, Scientia Sinica, t. 15, n° 6, 1966, p. 763-772. | MR | Zbl

[7] W.H. Klink and T. Ton-That, Ann. Inst. H. Poincaré, Ser. A, t. 31, 1979, p. 99-113. | Numdam | MR | Zbl