@article{AIHPA_1979__31_2_77_0, author = {Klink, W. H. and Ton-That, T.}, title = {Holomorphic induction and the tensor product decomposition of irreducible representations of compact groups. {I.} $SU(n)$ groups}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {77--97}, publisher = {Gauthier-Villars}, volume = {31}, number = {2}, year = {1979}, mrnumber = {561916}, zbl = {0439.22020}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1979__31_2_77_0/} }
TY - JOUR AU - Klink, W. H. AU - Ton-That, T. TI - Holomorphic induction and the tensor product decomposition of irreducible representations of compact groups. I. $SU(n)$ groups JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1979 SP - 77 EP - 97 VL - 31 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1979__31_2_77_0/ LA - en ID - AIHPA_1979__31_2_77_0 ER -
%0 Journal Article %A Klink, W. H. %A Ton-That, T. %T Holomorphic induction and the tensor product decomposition of irreducible representations of compact groups. I. $SU(n)$ groups %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1979 %P 77-97 %V 31 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1979__31_2_77_0/ %G en %F AIHPA_1979__31_2_77_0
Klink, W. H.; Ton-That, T. Holomorphic induction and the tensor product decomposition of irreducible representations of compact groups. I. $SU(n)$ groups. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 31 (1979) no. 2, pp. 77-97. http://www.numdam.org/item/AIHPA_1979__31_2_77_0/
[1] Trans. Amer. Math. Soc., t. 93, 1959, p. 53 ; , , and , J. Math. Phys., t. 8, 1967, p. 536; , J. Math. Phys., t. 14, 1973, p. 1451; , Amer. Math. Soc. Transl., Ser. 2, t. 76, 1968, p. 1. | MR
,[2] Proc. Roy. Soc., A 245, 1958, p. 128; , Phys. Rev., t. 125, 1962, p. 1067. | MR | Zbl
,[3] Rev. Mod. Phys., t. 35, 1963, p. 976.
,[4] The Theory of Unitary Group Representation (University of Chicago Press, Chicago, 1967), and references cited therein; , Lectures in Theoretical Physics, edited by K. T. Mahanthappa and W. E. Brittin (Gordon and Breach Science Publishers, Inc., New York, 1969), vol. XI D, p. 43-75. | MR
,[5] Harmonic Analysis on Semisimple Lie Group (Springer-Verlag, Berlin, 1972), vol. I. | Zbl
,[6] Finite Dimensional Representations of the Group of Unimodular Matrices. Dokl. Acad. Nauk. SSR, t. 71, 1950, p. 823-825, Russian; , Classical Groups. Spectral Analysis of Finite Dimensional Representations, Uspehi Mat. Nauk., t. 27, 1962, p. 53, Russian Math., Surveys, t. 17, 1962, No. 1 ; and , Finite-dimensional Irreducible Representations of the Unitary Group and the Full Linear Groups and Related Special Functions, Izv. Akad. Nauk. SSSR Ser. Math., t. 29, 1965, p. 1329-1356, English Transl., Amer. Math. Soc. Transl., t. 64, 1967, p. 116-146, MR 34 # 1450. | MR
and ,[7] J. Math. Phys., t. 8, 1967, p. 691 ; and , Comm. Math. Phys., t. 8, 1968, p. 89. | MR
, and ,[8] Œuvres Complètes, « Compléments au mémoire sur la géométrie des groupes simples » (Gauthier-Villars, Paris, 1952), partie I, vol. 2, p. 1003-1010. | MR
,[9]
et , Séminaire Bourbarki (1953-1954).Exposé 100 par Représentations linéaires et espaces homogènes Kähleriens des groupes de Lie compacts (Secrétariat Math., Paris, 1959) ; , Ann. of Math., t. 66, 1957, p. 203. | Numdam | Zbl
,[10] The Classical Groups. Their Invariants and Representations, 2d ed. (Princeton Univ. Press, Princeton, N. J., 1946). | MR
,[11] Trans. Amer. Math. Soc., t. 216, 1976, p. 1-46. | MR | Zbl
,[12] Amer. J. Phys., t. 38, 1970, p. 3-42. | MR
,[13] Orthogonal Polynomial Bases for Holomorphically Induced Representations of the General Linear Groups, Ann. Inst. Henri Poincaré, Vol. XXXI, n° 2, 1979, p. 99-113. | Numdam | MR | Zbl
and ,Construction Explicite Non-Itérative des Bases de GL(n, C)-Modules, Comptes Rendus de l'Académie des Sciences, Séance du 16 juillet 1979.
et ,[14] The Null Space Concept in Implementing Unitary Symmetry, Revista Mexicana de Fiscia, t. 23, 1974, p. 221-242, and references cited therein.
and ,