@article{AIHPA_1977__26_3_219_0, author = {Mourre, Eric}, title = {Applications de la m\'ethode de {Lavine} au probl\`eme \`a trois corps}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {219--262}, publisher = {Gauthier-Villars}, volume = {26}, number = {3}, year = {1977}, mrnumber = {441155}, zbl = {0364.47005}, language = {fr}, url = {http://www.numdam.org/item/AIHPA_1977__26_3_219_0/} }
TY - JOUR AU - Mourre, Eric TI - Applications de la méthode de Lavine au problème à trois corps JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1977 SP - 219 EP - 262 VL - 26 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1977__26_3_219_0/ LA - fr ID - AIHPA_1977__26_3_219_0 ER -
%0 Journal Article %A Mourre, Eric %T Applications de la méthode de Lavine au problème à trois corps %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1977 %P 219-262 %V 26 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1977__26_3_219_0/ %G fr %F AIHPA_1977__26_3_219_0
Mourre, Eric. Applications de la méthode de Lavine au problème à trois corps. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 26 (1977) no. 3, pp. 219-262. http://www.numdam.org/item/AIHPA_1977__26_3_219_0/
[1] Hilbert Space Approach to Quantum Mechanical Three Body Problem. Ann. Inst. Henri Poincaré, vol. XXI, n° 2, 1974. | EuDML | Numdam | Zbl
et ,[2] Asymptotic Completeness in Two and Three Particle Quantum Mechanical Scattering. Ann. Phys., t. 90, 1975, p. 127-165. | MR
,[3] Mathematical Aspects of the Three Body Problem in the Quantum Scattering Theory. Israel Program for Scientific Translation, Jerusalem, 1965. | MR | Zbl
,[4] Wave Operators and Similarly for Some Non-Self-Adjoint Operators. Math. Ann., t. 162, 1966. b) Growth Properties of Solutions of the Reduced Wave Equation with Variable Coefficient. Comm. Pure Appl. Math., t. 12, 1959. | EuDML | MR | Zbl
, a)[5] Jour. Anal. Math., t. 23, 1970. b) International Congress of Mathematicians, Nice, 1970.
, a)[6] Quantum Mechanics for Hamiltonians Defined as Quadratic Forms Princeton Univ. Press, Princeton, 1971. | MR | Zbl
,[7] Absolute Continuity of Positive Spectrum for Schrödinger Operators with Long Range Potentials. J. Functional Analysis, t. 12, 1973. | MR | Zbl
,[8] Methods of Modern Mathematical Physics. Academic Press, New York, vol. III, in preparation. | MR | Zbl
and ,[9] Linear Operators, Part I.
,[10] Perturbation Theory for Linear Operators. | Zbl
,[11] Commutators and Scattering Theory II. A Class of One-Body Problems. Indiana Univ. Math. J., t. 21, 1972, p. 643-655. | MR | Zbl
,[12] On Positive Eigenvalues of One-Body Schrödinger Operators, Communications on Pure and Applied Mathematics, vol. XXII, 1967. | Zbl
,[13] On the algebraic theory of scattering. J. F. A., t. 15, 1974, p. 364-377. | Zbl
[14] Scattering theory with singular potential. I the two body problem. Ann. Inst. Henri Poincaré, t. 21, 1974, p. 185-215. | Numdam | MR