Hilbert space approach to the quantum mechanical three-body problem
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 21 (1974) no. 2, pp. 97-145.
@article{AIHPA_1974__21_2_97_0,
     author = {Ginibre, J. and Moulin, M.},
     title = {Hilbert space approach to the quantum mechanical three-body problem},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {97--145},
     publisher = {Gauthier-Villars},
     volume = {21},
     number = {2},
     year = {1974},
     mrnumber = {368656},
     zbl = {0311.47003},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1974__21_2_97_0/}
}
TY  - JOUR
AU  - Ginibre, J.
AU  - Moulin, M.
TI  - Hilbert space approach to the quantum mechanical three-body problem
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1974
SP  - 97
EP  - 145
VL  - 21
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1974__21_2_97_0/
LA  - en
ID  - AIHPA_1974__21_2_97_0
ER  - 
%0 Journal Article
%A Ginibre, J.
%A Moulin, M.
%T Hilbert space approach to the quantum mechanical three-body problem
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1974
%P 97-145
%V 21
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1974__21_2_97_0/
%G en
%F AIHPA_1974__21_2_97_0
Ginibre, J.; Moulin, M. Hilbert space approach to the quantum mechanical three-body problem. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 21 (1974) no. 2, pp. 97-145. http://www.numdam.org/item/AIHPA_1974__21_2_97_0/

[1] S.T. Kuroda, Nuov. Cim., t. XII, 1959, p. 431. | Zbl

[2] T. Kato, Proc. Intern. Conf. on Functional Analysis and related topics, Tokyo Univ. Press, 1970. | MR

[3] S. Agmon, Jour. Anal. Math., t. 23, 1970, p. 1. | Zbl

[4] B. Simon, Comm. Pure Appl. Math., t. 22, 1969, p. 531. | MR | Zbl

[5] T. Ikebe, Arch. Ratl. Mech. Anal., t. 5, 1960, p. 1. | MR | Zbl

[6] S. Agmon, International Congress of Mathematicians, Nice, 1970.

[7] M. Reed and B. Simon, Methods of modern mathematical Physics, Academic Press, New York, Vol. III, in preparation. | Zbl

[8] R. Lavine, Commun. Math. Phys., t. 20, 1971, p. 301. | MR | Zbl

[9] R. Lavine, J. Func. Anal., t. 12, 1973, p. 30. | MR | Zbl

[10] J. Aguilar and J.M. Combes, Commun. Math. Phys., t. 22, 1971, p. 269. | MR | Zbl

[11] B. Simon, Commun. Math. Phys., t. 27, 1972, p. 1. | Zbl

[12] W. Hunziker, Helv. Phys. Acta, t. 39, 1966, p. 451. | MR | Zbl

[13] L.D. Faddeev, Trudy Steklov Math. Inst., t. 69, 1963. | Zbl

[14] K. Hepp, Helv. Phys. Acta, t. 42, 1969, p. 425. | MR

[15] A. Schtalheim, Helv. Phys. Acta, t. 44, 1971, p. 642.

[16] R. Lavine, J. Math. Phys., t. 14, 1973, p. 376. | MR | Zbl

[17] E. Balslev and J.M. Combes, Commun. Math. Phys., t. 22, 1971, p. 280. | MR | Zbl

[18] T. Kato, Math. Ann., t. 162, 1966, p. 258. | MR | Zbl

[19] R.G. Newton, J. Math. Phys., t. 12, 1971, p. 1552. | Zbl

[20] A. Martin, Helv. Phys. Acta, t. 45, 1972, p. 140.

[21] B. Simon, Quantum Meehanics for Hamiltonians defined as quadratic forms, Princeton Univ. Press, Princeton, 1971. | MR | Zbl

[22] E. Nelson, J. Math. Phys., t. 5, 1964, p. 332. | Zbl

[23] U. Greifenegger, K. Jörgens, J. Weidmann and M. Winkler, Streutheorie für Schrödinger operatoren, preprint, 1972.

[24] N. Dunford and J. Schwartz, Linear operators, Interscience, New York, 1958, Vol. I. | MR | Zbl

[25] B. Simon, Helv. Phys. Acta, t. 43, 1970, p. 607. | MR

[26] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1973, Vol. I. | Zbl

[27] S.T. Kuroda, Jour. Anal. Math., t. 20, 1967, p. 57. | Zbl

[28] R. Lavine, Indiana Univ. Math. Jour., t. 21, 1972, p. 643. | MR | Zbl

[29] K.M. Watson, Phys. Rev., t. 89, 1953, p. 575. | Zbl

[30] A.J. O'Connor, Commun. Math. Phys., t. 32, 1973, p. 319.

[31] R.J. Iorio and M. O'Carroll, Commun. Math. Phys., t. 27, 1972, p. 137.

[32] J.M. Combes, Commun. Math. Phys., t. 12, 1969, p. 283. | Zbl

[33] D.R. Yafaev, Dokl. Akad. Nauk SSSR, t. 206, 1972, p. 68 ; Transl. Sov. Phys. Dokl., t. 17, 1973, p. 849.

[34] L.V. Kantorovitch and G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon Press, London, 1964. | Zbl