@article{AIHPA_1975__22_2_109_0, author = {Glimm, James and Jaffe, Arthur}, title = {On the approach to the critical point}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {109--122}, publisher = {Gauthier-Villars}, volume = {22}, number = {2}, year = {1975}, mrnumber = {384013}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1975__22_2_109_0/} }
TY - JOUR AU - Glimm, James AU - Jaffe, Arthur TI - On the approach to the critical point JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1975 SP - 109 EP - 122 VL - 22 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1975__22_2_109_0/ LA - en ID - AIHPA_1975__22_2_109_0 ER -
Glimm, James; Jaffe, Arthur. On the approach to the critical point. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 22 (1975) no. 2, pp. 109-122. http://www.numdam.org/item/AIHPA_1975__22_2_109_0/
[1] Conservation of estimates in quantum field theory. Comm. Pure and Appl. Math., t. 25, 1972, p. 759-779. | MR
,[2] Broken scale invariance in scalar field theory. Phys. Rev., D2, 1970, p. 1541-1547.
,[3] Scaling Anomalies, in Developments in High Energy Physics, Academic Press, New York, 1972, p. 280-296. | MR
,[4] Construction of a one dimensional quantum field via a continuous Markov field. Funct. Anal. and its Appl., t. 7, 1973, p. 324-325 (English transl.). | Zbl
and ,[5] Schwinger functions and their generating functionals I, II. Helv. Phys. Acta, and Adv. in Mathematics. | MR | Zbl
,[6] General formulation of Griffiths' inequalities. Commun. Math. Phys., t. 16, 1970, p. 310-328. | MR
,[7] The (λφ4)2 quantum field theory without cutoffs III. The physical vacuum. Acta Math., t. 125, 1970, p. 203-261. | MR
and ,[8] The λ(φ4)2 quantum field theory IV. Perturbations of the Hamiltonian. J. Math. Phys., t. 13, 1972, p. 1558-1584. | MR
and ,[9] Entropy principle for vertex functions in quantum field models. Ann. Institut Henri Poincaré, t. 21, 1974, p. 1-26. | Numdam | MR
and ,[10] Critical point dominance in quantum field models. Ann. Institut Henri Poincaré, t. 21, 1974, p. 27-41. | Numdam | MR
and ,[11] φ42 quantum field model in the single-phase region: Differentiability of the mass and bounds on critical exponents, Phys. Rev., D15, to appear.
and ,[12] A remark on the existence of φ44. Phys. Rev. Lett., t. 33, 1974, p. 440-442. | MR
and ,[13] Absolute bounds on vertices and couplings. Ann. Institut Henri Poincaré, t. 22, 1975, p. 1-13. | Numdam | MR
and ,[14] Two and three body equations in quantum field models. Commun. Math. Phys., to appear. | MR
and ,[15] The Wightman axioms and particle structure in the P(φ)2 quantum field model. Ann. Math., t. 100, 1974, p. 585-632. | MR
, and ,[16] The particle structure of the weakly coupled P(φ)2 models and other applications of high temperature expansions, in: Constructive Quantum Field Theory, G. Velo and A. S. Wightman (eds.), Springer-Verlag, Berlin, 1973. | MR
, and ,[17] Nelson's Symmetry and the infinite volume behavior of the vacuum in P(φ)2. Commun. Math. Phys., t. 27, 1972, p. 10-22. | MR
, and ,[18] The P(φ)2 Euclidean quantum field theory as classical statistical mechanics. Ann. Math., t. 101, 1975, p. 111-259. | MR
, and ,[19] The pressure is independent of the boundary conditions, preprint. | MR
, and ,[20] More inequalities for Ising ferromagnets. Phys. Rev., B5, 1972, p. 2538- 2541.
,[21] GHS and other inequalities. Commun. Math. Phys., t. 35, 1974, p. 87-92. | MR
,[22] Investigation of the spectra of stochastic operators arising in lattice models of a gas. Theoretical and Math. Phys., t. 2, 1970, p. 167-176 (English transl.).
and ,[23] Axioms for Euclidean Green's functions I, II. Commun. Math. Phys., t. 31, 1973, p. 83-113 and Commun. Math. Phys. | MR | Zbl
and ,[24] Field theory approach to second order phase transitions in two and three dimensional systems. 1973 Cargèse lectures.
,[25] Lattice approximation of the field theory in a finite volume | MR
,[26] Tricritical exponents and scaling fields. Phys. Rev. Lett., t. 29, 1972, p. 349-352.
and ,[27] Local operator products and field equations in P(φ)2 theories.
,[28] Perturbation of the P(φ)2 quantum field Hamiltonian. J. Math. Phys., t. 14, 1973, p. 823-828. | MR
,[29] Small distance behavior in field theory and power counting. Commun. Math. Phys., t. 18, 1970, p. 227-246. | Zbl
,