@article{AIHPA_1974__21_1_1_0, author = {Glimm, James and Jaffe, Arthur}, title = {The entropy principle for vertex functions in quantum field models}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {1--25}, publisher = {Gauthier-Villars}, volume = {21}, number = {1}, year = {1974}, mrnumber = {391796}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1974__21_1_1_0/} }
TY - JOUR AU - Glimm, James AU - Jaffe, Arthur TI - The entropy principle for vertex functions in quantum field models JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1974 SP - 1 EP - 25 VL - 21 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1974__21_1_1_0/ LA - en ID - AIHPA_1974__21_1_1_0 ER -
%0 Journal Article %A Glimm, James %A Jaffe, Arthur %T The entropy principle for vertex functions in quantum field models %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1974 %P 1-25 %V 21 %N 1 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1974__21_1_1_0/ %G en %F AIHPA_1974__21_1_1_0
Glimm, James; Jaffe, Arthur. The entropy principle for vertex functions in quantum field models. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 21 (1974) no. 1, pp. 1-25. http://www.numdam.org/item/AIHPA_1974__21_1_1_0/
[1] Asymptotic perturbation expansion in the P(Φ)2 quantum field theory. Commun. Math. Phys., t. 35, 1974, p. 347-356. | MR
,[2] Stationary entropy principle and renormalization in normal and superfluid systems I, II. Jour. Math. Phys., t. 5, 1964, p. 14-30, p. 31-59.
and ,[3] The Wightman axioms and particle structure in the P(Φ)2 quantum field model. Ann. Math., to appear.
, and ,[4] The particle structure of the weakly coupled P(Φ)2 models and other applications of high temperature expansions. Part II. The cluster expansion. In: Constructive quantum field theory, Ed. by G. Velo and A. Wightman, Lecture notes in physics, Vol. 25, Springer Verlag, Berlin, 1973. | MR
, and ,[5] The λΦ43 field theory in a finite volume.
,[6] Schwinger functions and their generating functionals. I. Helv. Phys. Acta. | MR | Zbl
,[7] Relativistic field theories with symmetry breaking solutions. Nuovo Cimento (L), t. 34, 1964, p. 1790-1795.
,[8] Sous-différentiabilité. In : Colloquium on convexity, ed. by Fenchel. Kobenhavns Universitet Matematisk Institut, Copenhagen, 1967. | MR | Zbl
,[9] On the many-particle structure of Green's functions in quantum field theory. J. Math. Phys., t. 1, 1960, p. 249-273. | MR
,[10] Renormalizable models with simple symmetry breaking. I. Symmetry breaking by a source term. Commun. Math. Phys., t. 16, 1970, p. 48-80. | MR
,[11] Legendre transforms of the generating functionals in quantum field theory. Teoret. i Mat. Fizika, t. 12, 1972, p. 352-369.
and ,