@article{AIHPA_1973__18_3_185_0, author = {Michel, Louis and Radicati, Luigi A.}, title = {The geometry of the octet}, journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique}, pages = {185--214}, publisher = {Gauthier-Villars}, volume = {18}, number = {3}, year = {1973}, mrnumber = {325036}, zbl = {0267.22019}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1973__18_3_185_0/} }
TY - JOUR AU - Michel, Louis AU - Radicati, Luigi A. TI - The geometry of the octet JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1973 SP - 185 EP - 214 VL - 18 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1973__18_3_185_0/ LA - en ID - AIHPA_1973__18_3_185_0 ER -
Michel, Louis; Radicati, Luigi A. The geometry of the octet. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 18 (1973) no. 3, pp. 185-214. http://www.numdam.org/item/AIHPA_1973__18_3_185_0/
[1] Phys. Rev., t. 125, 1962, p. 1097. | MR
,[2]
and :(a) Symmetry Principles at High Energy (Fifth Coral Gables Conférence, Benjamin, New-York, 1968, p. 19.)
(b) Atti. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur., 1971, p. 377.
(c) Evolution of Particle Physics (dedicated to E. Amaldi), Academic Press, New York, 1970, p. 191.
(d) Ann. Phys., t. 66, 1971, p. 758.
[3] The d-coefficients were introduced for SU (3), by (réf. [1]) and Independently and for all SU (n), by , J. Math. Phys., vol. 4, 1963, p. 436.
[4] This is the oldest paper listing essentially all relations between the f-and d-coefficients for SU (3) (Sov. J. Nucl. Phys., t. 4, 1967, p. 605).
and ,This paper gives a fairly complete set of relations for all SU (n) (J. of Math. Phys., t. 8, 1967, p. 2194.) After this paper several authors have discussed this type of relations : amongst the others we quote , , , and .
and ,[5] This is to our knowledge the only paper where some relation are written in vector form (Ann. of Phys., t. 33, 1965, p. 214).
,[6] A study of the invariants and their values for all representations is contained in and , Sov. J. Nucl. Phys., t. 3, 1966, p. 676, and in and , J. Math. Phys., vol. 11, 1970, p. 2368.
[7] The concept of stratum used here is a simple example of that (« strate » in French) defined by L'Enseignement Mathématique, t. 8, 1962, p. 24). | Zbl
([8] This result is due to and , For a review paper on the action of compact groups [see , Differential Analysis (Bombay Colloqum, 1964, p. 43)]. See also . | Zbl
(a) Non linear group actions, smooth action of compact Lie-groups on manifolds (Statistical Mechanics and Field Theory, Israel University Press, Jerusalem, 1972, p. 133-150.) | Zbl
(b) Geometrical aspects of symmetry breaking (Proceedings of the 3rd GIFT Seminar in Theoretical Physics, University of Madrid, 1972 p. 49-131.)