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Section A :

Physique théorique.

1. - INTRODUCTION

The adjoint representation of SU (3) plays a specially important role
in the physical applications since the electromagnetic and weak currents
whose space integrals are the generators of the symmetry belongs to it.

In the physical litterature this representation is usually discussed

by using a particular basis namely the Gell-Mann [1 ] ~-matrices. To

evaluate most of the physical quantities which are functions of the matrix
elements of the currents on vectors of the adjoint representation, one
has to compute expressions involving products of the tensors components

and B/3 These are sines and cosines of angles multiples of 30°.
We think there might be advantages in going beyond this trigonome-

trical approach by studying the geometry of the 8-dimensional

space R8 of the SU (3) adjoint representation. In our opinion this
allows to obtain a deeper understanding of the structure of R8, a structure
much richer than the one of R on which acts the 3-dimensional rotation

group or its covering group SU (2). Indeed R8 is not " isotropical"
under the action of SU (3), but contains families of orbits of special
directions with _ peculiar geometrical properties. It is a remarkable
fact that the directions in R8 corresponding to physical quantities
(strong and weak hypercharge, electromagnetic charge, weak currents,
etc.) all belong to these exceptional families.
We have studied this correspondence [which actually goes beyond

SU (3)] in a series of papers [2] containing only a brief summary of our
geometrical method and of its results. A detailed accound was given
in a preprint reproduced in 1969 in Pisa and Tel-Aviv, whose publication
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186 L. MICHEL

was delayed by our intention to write a more systematic and general
treatement of all the SU (n).
We now think that the elementary approach of our preprint might

have some interest for physicists and for this reason we have decided
to publish it with a few modifications and improvements. We have
in particular changed the normalization of the symmetrical (V) product
so that the structure constants of this algebra are now equal to ~/3 times
the d-tensor of Gell-Mann.
The first two sections of this paper do not contain new results : formu-

lae equivalent to ours can be found in several articles [3], [4], [5].
We believe however that our derivations are simpler than the ones

which explicitely use the coordinates and that they allow an easier
extension to more complicated cases.

II. - THE SYMMETRICAL AND ANTISYMMETRICAL SU (n)
INVARIANT ALGEBRAS ON Rn2-1

1. The polynomial invariants on Rn2-1 i

SU (n) is the group of n X n unitary = u*), unimodular (det u = 1)
matrices. Every u E SU (n) can be written in the form

where x is a n X n Hermitian (x = x*) traceless (tr x = 0) matrix. The set

of all x form an (n2 - 1 )-dimensional, real vector space, Rn2 - I. We define
the Euclidean scalar product of two vectors x and by

The action of SU(n) on Rn2-1 is given by

for every u ~ SU (n) and every This defines the adjoint
representation of SU (n); it is an irreducible representation that we
denote by U (u). The transformation (II .3) obviously leaves invariant
the scalar product (II.2).
The scalar product is the only SU (n) invariant bilinear function of

two vectors. For three vectors x, y, z it can be proved that there are two
linearly independent trilinear invariants :
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187THE GEOMETRY OF THE OCTET

By using the symmetry properties of the trace it can be verified that
~, ~ 2 j and [x, y, z] are completely symmetrical and antisymmetrical
respectively in the three vectors.
More general polynomial invariants are polynomials in the traces

of product of vectors (see e. g. [6]).

2. The invariant algebras

From the existence of only one bilinear form and two linearly inde-
pendent trilinear forms on Rn2-1 invariant under SU (n) we conclude that.
there are only two linearly independent algebras on Rn2-1 with SU (n)
as automorphism group. One is the Lie algebra whose multiplication
law is

Another is the symmetrical algebra whose multiplication law is

Any algebra on i with SU (2) as automorphism group, is of the

form

with a and j3 real. Indeed we have

The two trilinear invariants can now be written :

3. The operators /~ = ~/B ~v

,T
Every .r~R~"~ defines a linear mapping .r~ RnQ -1 ’~ RnQ - ~ :

for every The r. h. s. of (I I .12) is defined by (11.8).
We will in particular consider the two mappings :
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From (II.10), (11.11) it follows that the linear operators are

respectively symmetrical and antisymmetrical, i. e.

The adjoint representation U (u) of SU (n), transforms /~, accor-

ding to

The linear mappings (1) ~, ~’, Rn2 -1 -+ R, ~ (x) = Tr /~ ~’ (x) = Tr d,,,
commute with the group action on e. g. For example :

Hence the kernel of ~ [i. e. the set of x such that ~ (x) = 0; it is a
vector subspace] is invariant by the group. Since the representation
U (u) is irreductible, this kernel must be either 0 ~ } or the whole space.
Since its dimension is 2 n2 - 2 &#x3E; 0, Ker’’ = Ker === 4J’ i. e.

The first equality (II.16) can also be derived from (II.14). An

elementary proof of the second one will be given later.
We begin by establishing a number of relations satisfied by and dr

which depend upon the fact that SU (n) is an automorphism group of
the two algebras /B and v. This implies that ad x = fx is a derivation
for both of them, that is

Equation (II.17), which is simply Jacobi’s identity, can also be written
in the form

which states that the commutator of two derivation is a derivation.
Similarly (11.18) is equivalent to

From (II.18) we obtain two other equations by cyclic permutations
of x, y, z. Adding these three equations we get :

(1) We use tr for the trace of n by n matrices and Tr for the trace of operators on
R 

2.- 
i. e. (n~ - 1) x (n~ - 1) matrices.
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or

By transposition of (11.22) we obtain with (11.15) :

When x = y these last two equations become

We can now give another proof of the second equation of (II.16).
Indeed since the trace of a commutator vanishes, equation (11.20)
states that for any x and y, d~.~,~ y- is traceless. On the other hand it follows

from the Jacobi identity that the set of all vectors of the form is

an ideal of the Lie algebra. Since SU (n) is simple this ideal coicides
with the Lie algebra. This completes the proof of (11.16).

4. Further relations satisfied fx and dL

To obtain further relations for the two operators fx and dx we evaluate
with the help of (II.7) the associator of the -algebra, i. e. the vector

xv(Yvz) - We find

or

where the dyadic operator x &#x3E;  y is defined by

and I is the (n’ - 1) X (n’ - 1) unit matrix.
By antisymmetrizing equation (11.26) we obtain

Setting x = y in (11.26) we get

where

is the projection operator on the vector x.
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190 L. MICHEL

The expressions Tr fxfy, Tr dx dy, Tr fx are bilinear forms which
are invariant under the group SU (n) [use (11.15)]. Because of the

unicity up to a factor of such an invariant bilinear form, they are propor-
tional to (x, y) defined in (II.2).

For example Tr fr f1’ - ~, (x, y) is the Cartan-Killing form. We shall
now compute it. Let be a basic of orthonormal vectors in 
the complexified of Rn2-1 :

We choose .r == !/ = a, where a is a traceless Hermitean diagonal

matrix, whose diagonal elements are xi, real, with xi == 0.
Let ~/ be the n X n matrix whose elements are

then

All diagonal matrices commute so that == ~ e/ = 0.
Using : ( I 1 . 6), (11.11) we get,

since

and therefore

This equation, with the trace of (11.26), yields :

Finally, from (11.24) and (11.16), we get :

Equation (11.32) show that for n = 2, tr dt. = 0.
Since d, = d~, dj is a positive symmetrical operator, and
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191THE GEOMETRY OF THE OCTET

Therefore, for n = 2 the v algebra is trivial (see § 11.5).
We recall that the Casimir operator of the adjoint representation

of SU (n) :

is a multiple of the identity operator. From (11.31) we deduce :

Similarly we remark that Tr fx /y /~ Tr fn are linear combinaison

of [x, y, z] and { ~ ~ }.
Using (11.14), and Tr CAB = Tr ABC = Tr CT BT AT we see that

Tr fn fy f : and Tr fx dy d,~ are completely anti-symmetrical and Tr ~,
Tr d~- d,~ are completely symmetrical in x, y, z. Hence from (II .19)
and (II.31) :

This equation, together with (11.26) multiplied by fz, yield;

The trace of (11.23) multiplied by f,~, yields with (II.31) and (II.10) :

Similarly the trace of (II.29) multiplied by 

For the trace of the product of a larger number of operators ford we
refer to [4] and, for SU (3) only, to [3].
To obtain more relations for the two algebras /B and v we must make

explicit use of the fact that their elements are n X n matrices which

satisfy an algebraic equation of degree n. Before considering the case
of SU (3) we will briefly review the well known case of SU (2).

5. The space R3 of the adjoint representation of SU (2)

As an example we discuss the well known case of n = 2. The charac-
teristic equation for a 2 X 2 traceless matrix is
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The symmetrical algebra is thus trivial in this case. Indeed if

Hence dx = 0 or [see eq. (11.7)] :

Appart from Jacobi’s identity, the only non trivial equation is, in this
cas(11.26) :

Using Jacobi’s identity in the form (II.19) we get

Equations (11.29) and (II.31) give :

Hence for a normalized vector, (x, x) = 1, if x has the eigenvalues 1,
0, - 1 and the Casimir operator C has the eigenvalue 2 :

III. - THE GEOMETRY OF THE SU (3) OCTET

1. Relations for fx and dx specific to SU (3)

For n = 3, the vector space of the Lie algebra is R8, whose elements
are 3 X 3 Hermitian traceless matrices. They satisfy the equation

where

where
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Since x is Hermitean, its three eigenvalues are real i. e.

We notice that equation (111.1) can be rewritten as

For further reference we also give the fourth order relation

which is a particular cas of equation (II.25).
By polarization we get :

or

In terms of the operators d, equation (111.8) reads :

From (III. 9) and (11.26) symmetrized with respect to x and y we obtain.

Setting x = y we get

We end this section by recording other useful relations

They are deduced from (III. 12) and (III.13) by multiplying them
by Y (y) Py and taking the trace.

In particular if x = y we get for any vector x :

which could also directly be obtained from (111.5).
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With the use of (III.15), Schwartz inequality applied to (III.14) yields

[For SU (2), this is an equality.]

2. The q-vectors

A vector q of Rs will be called a q-vector if it satisfies one of the follo-
wing conditions :

where Y) (q) is a real number :

(iii) The matrix of q has a double eigenvalue.
(iv) The eigenvalues of f r are proportional to 1, 0, - 1.
Condition (i) shows that the matrix of q has only two distinct eigen-

values and is thus equivalent to (iii) or (ii).
We will now prove that (i) or (ii) or (iii) imply (iv). From (111.5)

and (111.6) if follows :

hence

If we multiply (III.12) by fq and use twice (II.24) we get

which implies

~ 2014 Y ~)) ~ is thus a projection operator whose trace is 4, and whose
B ~ /

eigenvalues are 0 and 1 (each four times degenerates). Its square roots :

which are antisymmetrical have thus the eigenvalues zero (four times
degenerate) and ~ 1 (each twice degenerate). We have thus proved
that (i), or (ii) ou (iii) imply (iv). That (iv) implies the other conditions
will be proven at the end of paragraph III.4.
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Let Uq be the centralizer of q, i. e. :

is a ~-algebra which is the Lie algebra of the isotropy group Gq of q
(also called the stabilizer or little group of q) :

By diagonalizing the matrix q one verifies that Gq is a U (2) group.
The Lie algebra (2) is thus a direct sum ( 1 ) EÐ S (2) of a
(1 ) and an S ’11 (2) Lie algebra. Hence each q-vector provides a

decomposition of RR into a direct sum of orthogonal subspaces :

In terms of the corresponding projection operators :

Equations (III.21) and (111.13) can thus be written :

In the following we will call a q-vector positive or negative when e (q)
is negative or positive respectively : that is [y (q) = 1],
(III.27) 0 (q) = - 1 4=~ ~ is a positive normalized q-vectors.

We add some remarks concerning the pairs of normalized positive
q-vectors.

THEOREM 1. - If qj and q2 are normalized positive q-vectors,

- ~~(~~2)~1. °
Proof. - For such a pair equation (III .14) reads :

COROLLARY 1 : t

THEOREM 2. - If q,, q~ are distinct commuting normalized positive
q-vectors, then q;; defined by q:~ + q1 + q.~ == 0, is also a normalized positive
q-vector which commutes with qi and q2.
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Proof. - (q:h = (q1 + q2, qi .-~- q2) = 1 shows that q:3 is normalized.
Moreover :

This shows that q;j is a normalized positive q-vector. Furthermore

so that commute with q1 and q2’

3. The r-vectors

A r-vector r is a vector whose matrix is singular i. e.

We will only consider normalized r-vectors, i. e. i~ (r) = 1.
From (I II . 6) it follows that r v r is a normalized positive q-vector; i. e.

with

Equation (111.5) then gives :

which shows that r E S (2) [use equation (I II . 26’)].
We will now prove the following

LEMMA 1. - Every 2-plane = two dimensional vector space P of RS
contains at least one r-vector.
Let r be the unit circle, y (x) = 1, of P. The real valued function on r,

0 (x) = (x v x, x) is continuous and has the property 6 (x) = - 0 ( - x).
Hence 6 has at least two zeros 0 (+ r), corresponding to an r-vector.

There are k-planes of Rg which contain only r-vectors as we will show
now for k = 3 and 4.

PROPOSITION 1. - The vectors which belong to the 3- and 4-dimensional
subspaces S ’llq and defined by a q-vector q, are r-vectors.
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Proo f. - Let x be in S or in %j. From it then follows

with ?. = - 03B8(q) 03B3(q) if and = + 1 2 03B8(q) 03B3(q) if 

Using (III.34) and (111.5) we obtain

This shows that x is a r-vector. In accordance with the discussion of
section II.2 the r-vectors of S and those of correspond respec-
tively to the eigenvalues 0 and ± 1 of Q (q) : see equation (111.21’).

If in equation (IM.10) we set x = r’, y = r" with r, r" E S flLq and we
apply the operators to q we get [use equation (111.33)] :

4. The Cartan subalgebras of S "U (3)

If x is not a q-vector, x and xvx span a two-dimensional space C~;
equations (III. 5) and (111.6) show that e,. is a ,/-algebra. It is also an
Abelian Lie algebra which is the centralizer of x in the Lie algebra [see also
(111.5) and (111.6 ii). Indeed, if x is not a q-vector e (x)~-’  Y 
according to has three distinct eigenvalues a,1 &#x3E; ~ &#x3E; ~:~ with
),j + 03BB2 + /:! = 0. Let v be a unitary transformation which diagona-
lizes .r; the set of u e SU (3) which commute with x is characterized by :

vxv-’] = 0. Hence vuv-1 is diagonal and since det u = 1, it is
a U (I) X U (1) group, called Cartan subgroup of SU (3), which we denote
by C.~.. Its Lie algebra is 
We choose for convenience normalized x : y (x) = 1. Since x is not

a q-vector, - 1  e (x)  1.
We shall now prove the following propositions :
(i) C. contains three normalized positive q-vectors, ql, q:3 :

Proof. - If 0 (x) ~ 0 from the conditions y (q;) =1,6 (ql) = - 1
we deduce, with the help of (III . 5) and (II 1.6), the equations

ANNALES DE L’INSTITUT HENRI POINCARÉ



198 L. MICHEL

These three equations have three real solutions ((x/, ~) when

0  ) I 1.
If Q (~) = 0 (i. e..r is a r-vector) a direct computation gives three real

roots (ai, ~) = (0, 1 ), (~3, - ~) ( - ~- ~ - ~ ) which also satisfy (III. 38)
and (111.39, 40). The proposition is thus proved for all

The solutions satisfy D al = ~~- j3 = 0 which imply

We introduce the following symbols :

and

and use the summation convention on repeated indices.
One can easily verify that

and

(ii) contains six r-vectors ::f: r,, ::f: r_~, + f;B.
The proof is obtained by verifying that

are r-vectors. They have the following properties :
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and therefore

Hence each pair q;, ri is an orthonormal basis for i:~. We remark that
the six unit r-vectors of are the vertices of a regular hexagon.

(iii) The six unit vectors are the roots of S ’lL (3) for e~.
We begin by recalling the definition of the roots of S 1i (3). Let us

consider the vector space C8, obtained by complexifying R8. The
elements of C8 are 3 X 3 traceless, complex matrices z. With the Hermi-
tian scalar product :

C is a Hilbert space. Notice that  x, r~ ~ reduces to (x, y) on RR. The

operators di, and f.x. are naturally extended to C8 : d,~, is real and symmetric
and therefore Hermitian; fz is real and antisymmetric and therefore
antihermitian. For every real is thus Hermitian and

Since for all real a E the operators i fa form a set of commuting Hermi-
tian operators they have a commun orthonormal basis of eigenvectors.
Let be such an eigenvector :

where ~~. (a) is a real function of a, which is a linear form on C,,. :

Hence there is a real vector such that

The vectors rz for all z are by definition the roots of (3) for 
To summarize, the roots of the Cartan subalgebra C are defined by

the equation in C8 :

To compute the roots r~ we choose successively for a the three norma-
lized q-vectors ql, qz, q3 of e. We know from equations (III.21) to
(111.26) that the eigenvalues of i f (qi) on ei are doubly degenerate and

equal to 0, ’2014 ? 2014 ’2014 ? so that 6 root vectors satisfy :
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’The comparison of these equations with (111.46) completes the proof
of (iii).
We shall give an alternative algebraic proof of (iii), obtained from the

~characteristic equation of fr. To establish this equation 
in equation (111.11), we multiply it by /~ and use (II.24). We thus
obtain

We then multiply (111.12) and use (11.24) twice :

By eliminating fxx between these two equations we get :

The equation for f x obtained by setting equal to zero in (111.57) the
expression between square brackets has three roots ~ 0 which are
distinct if y - 9 (X)2 ~ 0 and e (x)2 ~ 0. Equation (III.57) is
thus the characteristic equation of the antisymmetrical operator fx
which is already known to have zero as a double root when 9 (x)2 # y 

If we put Y (z) = 1 and - 1 ~ 6 (:r) = sin r.p ~ I, i. e. 2014 ~ ~ c9 ~ ~ ?
-the six eigenvalues of ifx in e+ are cos (03C6 3 + k03C03) with k = 0, 1, 2, 3, 4, 5.
The angles ~ + ~ ~ are the angles between x and the six (unit) r-vectors
J~ ri E C.. [Indeed 0 (x) = 0 = 0].

(iv) If a E the eigenvalues of da on ~1 are (qI, a) where q~ are the
.3 positive q-vectors of ~~.

Proof. - Equation (11.20) shows that for every commutes

with the set of ira, Hence the restriction of the db’s to C~ form
a commuting set of Hermitian operators. We can thus write

We shall call the vectors tz the " pseudo-roots 
" 

of SU (3) for e~. If the

:unit vector a is not a q-vector ( 0 (a) # 1), there exist only two unit
vectors defined up to a sign, such that bv b = a. We can check

that [use (111.5) and (111.6)] :
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201THE GEOMETRY OF THE OCTET

Fig. 1. - The six roots ~ rz and the three pseudo-roots q~ of a Cartan subalgebra.
Together with the - qi, they represent the " 12 h " of the SU (3) lock.

TABLE 1

Eigen values and eigen vectors o f the i fa and da
for the elements a of a Cartan subalgebra C
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Using equation (III . 13) we find

The last equality is obtained from (III.22) using y (r^) = y (b) = 1t
= 0. Since is a positive q-vector and equation (111.27)

shows that (III . 60) still holds when a is q-vector, we have thus proved (iv).
The q-vectors play for the operator da the role of the roots r for the ope-
rators i fa ; for this reason we shall call the q-vectors « pseudo-roots ».
The results of this section are summarized in figure 1 and Table 1,

which gives the eigenvalues of i fa and da for The explicit values
of the eigenvalues of ifa as function of a show that condition (iv) of sec-
tion III.2 implies the other three.

5. Orbits and strata of SU (3) on R8 and S7

In this section we study non linear geometrical properties, mainly
the orbits and strata of SU (3) on the octet space. For the definition
of orbits and strata and for general notions on group actions, the reader
is refer to Appendix 2.
The necessary and sufficient conditions for two vectors x and y of RS

to belong to a same orbit of SU (2) [i. e., there exists a u E SU (3) such
that y = uxw’ ] are

Indeed any Hermitian matrix can be diagonalized by a unitary trans-
formation (II.3), with its eigenvalues ordered in decreasing sequence :
À1 ~ ~2 ~ a3. Equation (III . 61) is equivalent to say that the Hermitian
3 X 3 matrices x and y have the same eigenvalues.
We can thus establish a one to one correspondence between the

orbits of SU (3) on R8 and the points of a domain in the plane 6, y defi-
ned by OJ : y:3 ~ 02.
The strata of R8 can be easily identified with the help of 

gram illustrated in figure 2.

(i) The general stratum is the open dense domain &#x3E; 02 of u~. The

isotropy groups of the orbits of this stratum are U (1) X U (1) groups
whose Lie algebra are the two dimensional Abelian Lie algebras discussed
in section I I 1.4.

(ii) The q-stratum is the frontier of the domain OJ, y3 = {}2, with the
exclusion of the point y == 0 = 0. The isotropy groups are conjugated
U (2) subgroup of SU (3) whose Lie algebra are the 1.1Lq (2) Lie algebras
discussed in section 111.2.
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(iii) The fixed point 0, y = e = 0 whose isotropy group is SU (3)
itself.

In the physical applications we are only interested in the directions
of R8, and not in the lenght of the vectors. We can thus consider the

action of SU (3) on the unit sphere S7 ~ R8 (y = 1 ) or even on the real

projective space PR (7) obtain from S7 by identification of points diame-
tricaly opposite. The orbits of SU (3) on S; can then be put into a one
to one correspondence with the points of the 
(see fig. 2).

There are only two strata on S; :

(i) The general stratum which contains the orbits corresponding to
all the points of the segment except for its two end points.

(ii) The q-stratum which is described by the two end points 0 === J~ 1.
They correspond to the two orbits of the normalized negative and positive
q-vectors respectively.

To study PR (7) we have to identify the orbits with ~ 0. We will
therefore denoted the orbits of PR (7) by There are three strata :

General stratum 0  ~ 0 ~ I  1, dimension 7, open dense;
The q-stratum I 0 = 1, one orbit of dimension 4;
The r-stratum I 0 I = 0, one orbit (the set of roots) of dimen-

sion 6.

It would beinteresting (and useful for physics) to study the orbits
of SU} on manifolds whose elements are geometrical objects of Rs, for
examples : pair of vectors, k-planes, subalgebras.
We leave such a systematic study to the reader; we only make some

remarks on this point.
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The isotropy group of an ordered pair of vectors x, y is the intersection
of the isotropy group of each vector. Hence in the action of SU (3) on
R~ (j) RR, the general stratum corresponds to the trivial isotropy group

==={0} when ~ 0) and it contains 8-dimensional orbits.
The Montgomery and Yang theorem (see Appendix 2) tells us that

this general stratum is 16-dimensional and therefore contains a 8-para-
meter family of (8-dimensional) orbits. One can choose for these para-
meters the algebraically independent invariants constructed out of
two vectors : (x, x), (y, y), (x, ~), ~ x, x, x ;, j .r, x, r~ ~, ~ I x, ~, r~ ~, ~ y, }
and one more, for instance or which are

linearly related by equations (III .14) and (III .14’). Any other invariant
built from x and y is function of these eight invariants.

For a non ordered pair of vectors x, y, satisfying (111.61), one must
include in the isotropy group of the pair the SU (3) transformations
which exchange the vectors.

6. The Lie Subalgebras of S ’tL (3)

We have alread found two orbits of S fl (3) Lie algebras, namely :
(2), the centralizers of q-vectors and the Cartan subalgebra the

centralizers of the other elements. We list here for completness all

the S ‘L1- (3) Lie subalgebras.
(i) 1-dimensional algebras generated by any vector x # 0.

(ii) 2-dimensional algebras. They are all Abelian and isomorphic
to the Cartan algebras defined in equation (III.4). These algebras
are all conjugated by the group ; i. e. they form one orbit for the group
action (indeed they are defined by any root r they contain). There

exist no non-Abelian 2-dimensional subalgebras. Indeed if follows from

(11.11) that if x ~ r~ ~ 0, it is orthogonal to both x and y, so that y, x, y

span a three dimensional space.

(iii) 3-dimensional subalgebras. They are all isomorphic to (2)
and their elements are all r-vectors.

Indeed, let £:3 be such an algebra and el, e2, e:j be an orthonormal

basis of it. Since the centralizers of the elements are e or we know

that is not Abelian; so there are two ei, e. g. ei, e2 such that e1  e2

is different from zero and orthogonal to 61, e2; i. e. :

This can be written [see (11.11)],

we first prove that all elements of are r-vectors.
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Indeed, we call an arbitrary normalized element ej and we compute

By using == 2014 . ( e:; ~ el) we get

[In this computation we have used (II.20) and (11.24).]
Therefore from a given basis we can define three normalized positive

q-vectors :

By using [see eq. (III . f 2 ")~ :

it follows that q3 is orthogonal to el. Since without a change, we could
permute 2 and 3 in the previous calculation it also follows that q2 is ortho-
gonal to e, . Morever e (e;) = ei) = 0, hence

that is, for every element r of the algebra r, the corresponding q-vector
q = r U r is orthogonal to all elements of the algebra. Finally we define

and we have

indeed, using II.24, we have :

We have two cases to consider :
(a) k ~ 0 : Its centralizer contains .~a, so that k is a q-vector.

[V y (r) = 1 ~ r v r = k] = (2). Equation (111.14)
with x = el, y = e2 yields |03BB| =1 [see also (III. 36)]. By choosing the right
orientation of the trihedron et, 6,, e:; we can set II = 1. Since the posi-
tive unit q-vectors form a single orbit, these are all conjugated by SU (3).

(b) k = 0 : This yields (ql, ~) = 2014 . From corollary 1 of ( III.2 )
q2, are the three positive unit q-vectors of a Cartan subalgebra.
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Equation (III. 14’) yields in this case I À = 2 1. As before we can choose

a right handed basis for which ~ = 2 1.
All S ‘L~ (2) of type (b) are conjugated. This can be proved as follows :
Let e; and el be right handed orthonormal basis of the two SU (2)

algebras. The eight algebra cally independant invariants [listed at the
end of (111.5)] made with a pair of vectors 

have the same value as those made with the pair e’i , c~. Thus these
two pairs of vectors are conjugated and the (2) Lie algebras they
generate are also conjugated. All these alsebras are conjugated to SO (3),
the subgroup of orthogonal (= real unitary) matrices of SU (3). Indeed
the SO (3) elements of the SU (3) Lie algebra are the antisymmetrical
matrices xT = - [Remark that = - ortho-

gonal basis ei of this Lie algebra is in Gell’Mann’s notation (see Appendix 1)
e. = ~~. ; ~ e~ = 2014 ~ e:; = )’2’

(iv) 4-dimensional subalgebras. They are conjugated and isomorphic
to (2).
We will prove first that any four-dimensional Lie algebra ,1-.’B has a

two dimensional Abelian subalgebra. = 4 be the decompo-
sition of its vector space into two perpendicular 2-planes. We choose
two linearly independent vectors in each 2-planes : xi, X2 E ~. Y2 
and define = y, = x. We remark that the direction of

y (resp. x) is independent of the choice of x,, X2 (resp. YI, y~); indeed

and similarly for x. If either x or y = 0, see below : ~’k ~3. Other-

wise we note [see that and We choose x’ l.. x,
x’ E ;d, y’ 1- y, y’ E Since x’ /B y’ is perpendicular to x’ and y’,
x’,,~ y ’ = ’l. x + j3 y, With

and similarly

Hence in all cases we can choose for the decomposition of 4 into two

perpendicular two planes : 4 = t1. 0 B where t1. carries a two-dimen-

sional Abelian Lie algebra generated by x’ and y’. Let b ..1 b’, b, b’ E 63.
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Then for every bAa (a) b’ and 03B2 (a) is a linear form on d.
Therefore there is a vector such that ~ (q) = 0 and d ® ~ ~ b ~ c
centralizer of q. Thus q is a q-vector and ~4 = (2).
We finally prove that S ’LL (3) has no Lie subalgebra with dimension

greater that 4. To prove this statement we begin by introducing the
notations : A n B for the vector space spanned by all vectors aA b with a
and b contained in the vector spaces A and B respectively; and A 1 B
to denote that A and B are orthogonal, i. e. (a, b) = 0, V a E A, V bEB.
Since S e (3) is a simple real compact Lie algebra :

and furthermore if A, B are two perpendicular subalgebras :

Indeed, from (11.11),

We are now ready to prove that if is a proper [i. e. ~ S U (3)]
Lie algebra of (3), I = dim, ~ ~ 4 :

Proof. - Let us first suppose 1 L 6. It follows from lemma 1 (in
section III. 3) that .~1 contains at least one vector x which is not a q-vector.
Since dim x = 2, dim x ~  = 0 or 1 and then dim = I or I - 1.

Equation (111.67) applied to the Lie algebra a x ~ and 1: implies
i ({ À x ~ ~ .~) i 7~ x ~ ; from (I II . 66) it follows that I + I - 1 + 1 ~ 8

i. e. t L 4. Consider now the case I = dim £ = 7, i. = ’tLx (1).
If x is not a q-vector the proof used for I ~ ~ is still valid. If instead x
is a q-vector, dim (e~n~)==720143=4. Equations (111.66) and

(III.67) would then imply 7 -~-- 4 --~- 1 ~ 8 which is absurd. This

completes the proof that I = dim .e L 4.
To summarize this section, the Lie algebra of SU (3) are :
(i) The one dimensional (1 ) ; an infinite family of conjugation

classes, each one defined by the parameter 0 1.

(ii) The conjugate class of the two dimensional Abelian algebra : i. e.
the Cartan subalgebra.

(iii a) The conjugate class of S (2).
(iii b) The conjugate class of the Lie algebra of SO (3) c SU (3) the

subgroup of orthogonal (= real) matrices of SU (3).
(iv) The conjugate class of flLq (2) i. e., 4-dimensional centralizer

of the elements which are q-vector.
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7. The Subspaces , of R8 generated by sets of non zero vectors

Let x, y, z, ... be a finite set of vectors and let denote the n-dimen-
sional space which is the closure of the set under addition, multiplication
by a scalar and under the /B- and v-laws. ~ is therefore both a ~- and
a v-algebra.
From the results of the previous section it follows that the only ~’ s

are :

(i) generated by a q-vector.
(ii) = the 2-dimensional Cartan generated by a vector x which

is not a q-vector.
(iii) ~4 = flLq (2) generated by two non-commuting vectors whose

centralizers have a 1-dimensional intersection which must then be a

q-vector.
(iv) ~8 = R8 generated by two non-commuting vectors whose centra-

lizers have zero intersections.

We remark that two non-commuting q-vectors qi and q2 generate a
‘~~ = (2) where the positive normalized q-vector q is given by

[for a physical example see [2 d], eq. (42)].

APPENDIX 1

In this appendix we give some of the relations which are necessary
to translate our formulation into the one communly used in physics.

Let 03BBi be the elements of an orthonormal basis of 

The structure constants of the A and v algebra are defined by

In this appendix we use the convention that repeated indices should
be summed from 1 to n2 - 1. Using (A .1), equation (A. 2’) and (A. 3)
are equivalent to

Thus f;jk and are the coordinates of completely antisymmetrical
and symmetrical third rank tensors invariant under SU (3). They are
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also related to the matrix elements of the f~,~ and d).i that we simply
denote by f; and d;.
Then

Gell-Mann [1] chose an explicit realization of suggested by physics,.
with two matrices : 03BB8 in the direction of the hypercharge and 03BB3 along
of the third component of isospin.
However the particle states of a SU (3) octet are eigen vectors (ele-

ments of C8, the complexified of RH) of the operators f,~ for It is
therefore more convenient to choose an orthonormal basis of C8 made
with the eigenvectors z, z* introduced in III.4. We give them explici-
tely as 3 by 3 matrices and in terms of Gell-Mann’s.

Let eij be the matrix with elements :

The Cartan subalgebra CD of diagonal matrices contains the three unit.
positive q-vectors :

and the six vectors ~ ri with :

For all have in commun the six eigenvectors zi, zl’ in ~1:

The vectors of

form an orthonormal basis of C8 [with the Hermitian scalar product:
(III.49)].

Their relation to the Gell-Mann basis and the particle states are:

given in Table 2.
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TABLE 2

Correspondance between 3 X 3 matrices and particles of the octet

To respect the symmetry under the Weyl’s group, i. e. the permutations
of the index values 1, 2, 3, /, should be replaced by - ~; in the Gell-
Mann basis.

TABLE 3

Relations between vectors o f complexified octet
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TABLE 4

Physical Directions along which SU (3) is broken

Table 3 contains some mathematical relation which are useful in the

applications of the formalism developped in this paper to physical
problems. Table 4, summarizes the definitions of the directions along
which SU (3) is broken. We finally list the relations between the vectors
introduced in Table 4 :

which is the Gell-Mann and Nishijima relation;

which were given by Cabibbo;

which were given in reference [2 d].

APPENDIX 2

In this appendix we give the necessary definitions and some results
concerning the action of a group G on a set M.
An action of G on M is given by a homomorphism

G =&#x3E; Permutation group on M.

If Ker f is trivial, G acts effectively on M.
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We will use latin letters for the elements of G, greek letters for those
of M, and when there is no ambiguity we will use x . x instead of f (x) [x];
e. g. xy. a = x. (!/. a) expresses the group law in the action.
An orbit o f G is the set of z. a for all x e G and a fixed a. M is thus

partitionned into orbits by the action of G. Two orbits E and E’ of G
are said to be of the same type if there is a bijective (one-to-one onto)
mapping E ~ E’ commuting with the group action i. e. for every x E G,
~P ° f (x) = f’ (x) ° ~P ~

Given the elements x E G which leave a fixed : x. a = a, form

a subgroup Gx of G, which is called the isotropy group, or little group
of a. If ~c and f3 belong to the same orbit there is at least one g E G such
that (3 = so G~ = g Ga g-i, i. e. the isotropy group of the points of
an orbit are all conjugated.
One can prove that if the isotropy groups of two points of M are conju-

gated, the orbit are of the same type (for this use as prototypes for orbits
of isotropy groups conjugated to H, the cosets g H of H, the group acting
by left translation x . g H = x g. H).
Thus if a and 03B2 ~ H have conjugated isotropy groups, even though

they may not belong to the same orbit, they belong however to orbits
of the same type.
We call stratum [7] of M the set of all points with the same isotropy

group up to a conjugation. A stratum is thus the union of all orbits
of a given type.
Many theorem exist for the differentiable actions of Lie groups on

manifolds M. We use only one in this paper. If G is compact, there
is one stratum on M which is open dense [8]. We will call it the generic
stratum.

APPENDIX 3

Part II was written for SU (n) and part III for SU (3) only. We give
here some hints for the generalization to SU (n) of the definitions and
properties of r and q-vectors using the same notations of section II.

The characteristic equation of a vector :

where the coefficients Yk (x) satisfy :
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A unit r-vector is defined by

i. e. the eigenvalues of r are 1, - 1 and 0 which appears (n - 2) times.
To each r-vector there corresponds for n &#x3E; 2 a q-vector

The unit positive q-vectors satisfy :

Given a maximal Abelian plane i. e. a Cartan subalgebra of SU (n)
(its dimension is n - 1), the roots are its units r-vectors and the pseudo-
roots the positive unit q-vectors, i. e.

[1] M. GELL-MANN, Phys. Rev., t. 125, 1962, p. 1097.

[2] L. MICHEL and L. RADICATI :
(a) Symmetry Principles at High Energy (Fifth Coral Gables Conférence, Benja-

min, New-York, 1968, p. 19.)
(b) Atti. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur., 1971, p. 377.

(c) Evolution of Particle Physics (dedicated to E. Amaldi), Academic Press,
New York, 1970, p. 191.

(d) Ann. Phys., t. 66, 1971, p. 758.
[3] The d-coefficients were introduced for SU (3), by M. GELL-MANN (réf. [1]) and

Independently and for all SU (n), by L. C. BIEDENHARM, J. Math. Phys., vol. 4,
1963, p. 436.

[4] V. I. OGIEVETSKII and I. V. POLUBARINOV, This is the oldest paper listing essentially
all relations between the f- and d-coefficients for SU (3) (Sov. J. Nucl. Phys., t. 4,
1967, p. 605).

L. M. KAPLAN and M. RESNIKOFF, This paper gives a fairly complete set of relations
for all SU (n) (J. of Math. Phys., t. 8, 1967, p. 2194.) After this paper several
authors have discussed this type of relations : amongst the others we quote
A. Pais, S. P. Rosen, A. J. Macfarlane, A. Subery and P. H. Weisz.

[5] C. DUBLEMOND, This is to our knowledge the only paper where some relation are
written in vector form (Ann. of Phys., t. 33, 1965, p. 214).

[6] A study of the invariants and their values for all representations is contained in
A. M. PERELEMOV and V. S. POPOV, Sov. J. Nucl. Phys., t. 3, 1966, p. 676, and
in J. D. LOUCK and L. C. BIEDENHARN, J. Math. Phys., vol. 11, 1970, p. 2368.

[7] The concept of stratum used here is a simple example of that (« strate » in French)
defined by R. THOM (L’Enseignement Mathématique, t. 8, 1962, p. 24).

ANNALES DE L’INSTITUT HENRI POINCARÉ



214 L. MICHEL

[8] This result is due to D. MONTGOMERY and C. T. YANG, For a review paper on the
action of compact groups [see D. MONTGOMERY, Differential Analysis (Bombay
Colloqum, 1964, p. 43)]. See also L. MICHEL.

(a) Non linear group actions, smooth action of compact Lie-groups on manifolds
(Statistical Mechanics and Field Theory, Israel University Press, Jerusalem,
1972, p. 133-150.)

(b) Geometrical aspects of symmetry breaking (Proceedings of the 3rd GIFT
Seminar in Theoretical Physics, University of Madrid, 1972 p. 49-131.)

(Manuscrit reçu Ie 29 mars 1973.)

VOLUME A-XVIII - 1973 - N° 3


