Nous étudions une variante des frises de Coxeter-Conway appelée 2-frises. La réalisation géométrique de l’espace des 2-frises est l’espace des modules de polygones, dans le plan projectif ou dans l’espace vectoriel de dimension 3, qui est un analogue de l’espace des modules des courbes de genre 0 avec points marqués. Nous montrons que l’espace des 2-frises admet une structure de variété amassée et nous en étudions les propriétés algébriques et arithmétiques.
We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of -gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus curves with marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.
Keywords: Frieze patterns, Coxeter-Conway friezes, moduli space, cluster algebra, pentagram map.
Mot clés : Frises, frises de Coxeter-Conway, espace de modules, algebre amassée, application pentagramme.
@article{AIF_2012__62_3_937_0, author = {Morier-Genoud, Sophie and Ovsienko, Valentin and Tabachnikov, Serge}, title = {2-frieze patterns and the cluster structure of the space of polygons}, journal = {Annales de l'Institut Fourier}, pages = {937--987}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {3}, year = {2012}, doi = {10.5802/aif.2713}, mrnumber = {3013813}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2713/} }
TY - JOUR AU - Morier-Genoud, Sophie AU - Ovsienko, Valentin AU - Tabachnikov, Serge TI - 2-frieze patterns and the cluster structure of the space of polygons JO - Annales de l'Institut Fourier PY - 2012 SP - 937 EP - 987 VL - 62 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2713/ DO - 10.5802/aif.2713 LA - en ID - AIF_2012__62_3_937_0 ER -
%0 Journal Article %A Morier-Genoud, Sophie %A Ovsienko, Valentin %A Tabachnikov, Serge %T 2-frieze patterns and the cluster structure of the space of polygons %J Annales de l'Institut Fourier %D 2012 %P 937-987 %V 62 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2713/ %R 10.5802/aif.2713 %G en %F AIF_2012__62_3_937_0
Morier-Genoud, Sophie; Ovsienko, Valentin; Tabachnikov, Serge. 2-frieze patterns and the cluster structure of the space of polygons. Annales de l'Institut Fourier, Tome 62 (2012) no. 3, pp. 937-987. doi : 10.5802/aif.2713. http://www.numdam.org/articles/10.5802/aif.2713/
[1] Gaudin subalgebras and stable rational curves (arXiv:1004.3253)
[2] -Tiling of the Plane, Illinois J. Math., Volume 54 (2010), pp. 263-300 | MR
[3] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Volume 81 (2006), pp. 595-616 | DOI | MR
[4]
(Unpublished notes)[5] Triangulated polygons and frieze patterns, Math. Gaz., Volume 57 (1973), p. 87-94 and 175–183 | DOI | MR | Zbl
[6] Frieze patterns, Acta Arith., Volume 18 (1971), pp. 297-310 | MR | Zbl
[7] The solution of the T-system for arbitrary boundary, Electron. J. Combin., Volume 17 (2010) no. 1 (Research Paper 89, 43 pp) | MR
[8] Positivity of the -system cluster algebra, Electron. J. Combin., Volume 16 (2009) | MR
[9] -systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property, Lett. Math. Phys., Volume 89 (2009), pp. 183-216 | DOI | MR
[10] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Etudes Sci., Volume 103 (2006), pp. 1-211 | EuDML | Numdam | MR | Zbl
[11] Moduli spaces of convex projective structures on surfaces, Adv. Math., Volume 208 (2007), pp. 249-273 | DOI | MR | Zbl
[12] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Volume 15 (2002), pp. 497-529 | DOI | MR | Zbl
[13] The Laurent phenomenon, Adv. in Appl. Math., Volume 28 (2002), pp. 119-144 | DOI | MR | Zbl
[14] Cluster algebras. IV. Coefficients, Compos. Math., Volume 143 (2007), pp. 112-164 | DOI | MR | Zbl
[15] Cluster algebras and Poisson geometry, Amer. Math. Soc., Providence, RI, 2010 | MR | Zbl
[16] The pentagram map and Y-patterns (Adv. Math, to appear, arXiv:1005.0598) | MR | Zbl
[17] A periodicity theorem for the octahedron recurrence, J. Algebraic Combin., Volume 26 (2007) no. 1, pp. 1-26 | DOI | MR | Zbl
[18] The periodicity conjecture for pairs of Dynkin diagrams (arXiv:1001.1880) | MR | Zbl
[19] Poisson groups and differential Galois theory of Schroedinger equation on the circle, Comm. Math. Phys., Volume 284 (2008), pp. 537-552 | DOI | MR | Zbl
[20] Liouville-Arnold integrability of the pentagram map on closed polygons (preprint) | MR | Zbl
[21] The Pentagram map: a discrete integrable system, Comm. Math. Phys., Volume 299 (2010), pp. 409-446 | DOI | MR | Zbl
[22] Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[23] The combinatorics of frieze patterns and Markoff numbers (arXiv:math/0511633)
[24] The pentagram map, Experimental Math., Volume 1 (1992), pp. 71-81 | EuDML | MR | Zbl
[25] Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl., Volume 3 (2008), pp. 379-409 | DOI | MR | Zbl
[26] Grassmannians and cluster algebras, Proc. London Math. Soc., Volume 92 (2006), pp. 345-380 | DOI | MR | Zbl
[27] Integrability of the Pentagram Map (arXiv:1106.3950) | MR | Zbl
[28] Variations on R. Schwartz’s inequality for the Schwarzian derivative (Discr. Comput. Geometry, in print, arXiv:1006.1339) | MR | Zbl
[29] The On-Line Encyclopedia of Integer Sequences (http://www.research.att.com/ njas/sequences)
[30] On the periodicity conjecture for -systems, Comm. Math. Phys., Volume 276 (2007), pp. 509-517 | DOI | MR | Zbl
Cité par Sources :