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2-FRIEZE PATTERNS AND THE CLUSTER
STRUCTURE OF THE SPACE OF POLYGONS

by Sophie MORIER-GENOUD,
Valentin OVSIENKO & Serge TABACHNIKOV

Abstract. — We study 2-frieze patterns generalizing that of the classical
Coxeter-Conway frieze patterns. The geometric realization of this space is the space
of n-gons (in the projective plane and in 3-dimensional vector space) which is a
close relative of the moduli space of genus 0 curves with n marked points. We show
that the space of 2-frieze patterns is a cluster manifold and study its algebraic and
arithmetic properties.
Résumé. — Nous étudions une variante des frises de Coxeter-Conway appelée

2-frises. La réalisation géométrique de l’espace des 2-frises est l’espace des modules
de polygones, dans le plan projectif ou dans l’espace vectoriel de dimension 3, qui
est un analogue de l’espace des modules des courbes de genre 0 avec n points
marqués. Nous montrons que l’espace des 2-frises admet une structure de variété
amassée et nous en étudions les propriétés algébriques et arithmétiques.

1. Introduction

The space Cn of n-gons in the projective plane (over C or over R) modulo
projective equivalence is a close relative of the moduli spaceM0,n of genus
zero curves with n marked points. The space Cn was considered in [25] and
in [21] as the space on which the pentagram map acts.
The main idea of this paper is to identify the space Cn with the space Fn

of combinatorial objects that we call 2-friezes. These objects first appeared
in [23] as generalization of the Coxeter friezes [6]. We show that Cn is iso-
morphic to Fn, provided n is not a multiple of 3. This isomorphism leads to
remarkable coordinate systems on Cn and equips Cn with the structure of

Keywords: Frieze patterns, Coxeter-Conway friezes, moduli space, cluster algebra, pen-
tagram map.
Math. classification: 13F60, 14N05, 51M99.



938 Sophie MORIER-GENOUD, Valentin OVSIENKO & Serge TABACHNIKOV

cluster manifold. The relation between 2-friezes and cluster algebras is not
surprising, since 2-friezes can be viewed as a particular case of famous re-
currence relations known as the discrete Hirota equation, or the octahedron
recurrence. The particular case of 2-friezes is a very interesting subject; in
this paper we make first steps in the study of algebraic and combinatorial
structures of the space of 2-friezes.

The pentagram map T : Cn → Cn, see [24, 25] and also [21, 16], is a
beautiful dynamical system which is a time and space discretization of the
Boussinesq equation. Complete integrability of the pentagram map for a
larger space of twisted n-gons was proved in [21]; recently, integrability of
T on Cn was established, by different methods, in [27] and [20]. The desire
to better understand the structure of the space of closed polygons was our
main motivation.

1.1. 2-friezes

We call a 2-frieze pattern a grid of numbers, or polynomials, rational
functions, etc., (vi,j)(i,j)∈Z2 and (vi+ 1
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2-FRIEZE PATTERNS AND THE MODULI SPACE OF POLYGONS 939

such that every entry is equal to the determinant of the 2×2-matrix formed
by its four neighbours:
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Generically, two consecutive rows in a 2-frieze pattern determine the whole
2-frieze pattern.
The notion of 2-frieze pattern is a variant of the classical notion of

Coxeter-Conway frieze pattern [6, 5]. Similarly to the classical frieze pat-
terns, 2-frieze patterns constitute a particular case of the 3-dimensional
octahedron recurrence:

Ti+1,j,k Ti−1,j,k = Ti,j+1,k Ti,j−1,k − Ti,j,k+1 Ti,j,k−1,

which may be called the Dodgson condensation formula (1866) and which
is also known in the mathematical physics literature as the discrete Hirota
equation (1981). More precisely, assume T−1,j,k = T2,j,k = 1 and Ti,j,k = 0
for i 6 −2 and i > 3. Then T0,j,k and T1,j,k form a 2-frieze. More general
recurrences called the T -systems and their relation to cluster algebras were
studied recently, see [17, 8, 18] and references therein. In particular, peri-
odicity and positivity results, typical for cluster algebras, were obtained.
The above 2-frieze rule was mentioned in [23] as a variation on the

Coxeter-Conway frieze pattern. What we call a 2-frieze pattern also ap-
peared in [2] in a form of duality on SL3-tilings. To the best of our knowl-
edge, 2-frieze patterns have not been studied in detail before.
We are particularly interested in 2-frieze patterns bounded from above

and from below by a row of 1’s and two rows of 0’s:

· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 1 1 1 1 1 · · ·
· · · v0,0 v 1

2 ,
1
2

v1,1 v 3
2 ,

3
2

v2,2 · · ·
...

...
...

...
...

· · · 1 1 1 1 1 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
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940 Sophie MORIER-GENOUD, Valentin OVSIENKO & Serge TABACHNIKOV

that we call closed 2-frieze patterns. We call the width of a closed pattern
the number of rows between the two rows of 1’s. In the sequel, we will often
omit the rows of 0’s in order to simplify the notation.

We introduce the following notation:

Fn = {closed 2-friezes of width n− 4}

for the space of all closed (complex or real) 2-frieze patterns. Here and
below the term “space” is used to identify a set of objects that we wish to
endow with a geometric structure of (algebraic, smooth or analytic) variety.
We denote by F0

n ⊂ Fn the subspace of closed friezes of width n − 4 such
that all their entries are real positive.
Along with the octahedron recurrence, the space of all 2-frieze patterns

is closely related to the theory of cluster algebras and cluster manifolds
[12]. In this paper, we explore this relation.

1.2. Geometric version: moduli spaces of n-gons

An n-gon in the projective plane is given by a cyclically ordered n-tuple of
points {v1, . . . , vn} in P2 such that no three consecutive points belong to the
same projective line. In particular, vi 6= vi+1, and vi 6= vi+2. However, one
may have vi = vj , if |i− j| > 3. We understand the n-tuple {v1, . . . , vn} as
an infinite cyclic sequence, that is, we assume vi+n = vi, for all i = 1, . . . , n.

We denote the space of all n-gons modulo projective equivalence by Cn:

Cn =
{

(v1, . . . , vn) ∈ P2 | det(vi, vi+1, vi+2) 6= 0, i = 1, . . . , n
}
/PSL3.

The space Cn is a (2n− 8)-dimensional algebraic variety.
Similarly, one defines an n-gon in 3-dimensional vector space (over R or

C): this is a cyclically ordered n-tuple of vectors {V1, . . . , Vn} satisfying the
unit determinant condition

det(Vi−1, Vi, Vi+1) = 1

for all indices i (understood cyclically). The group SL3 naturally acts on
n-gons. The space of equivalence classes is denoted by C̃n; this is also a
(2n− 8)-dimensional algebraic variety.
Projectivization gives a natural map C̃n → Cn. It is shown in [21] that

this map is bijective if n is not divisible by 3; see Section 2.3.
We show that the space of closed 2-frieze patterns Fn is isomorphic to

the space of polygons C̃n. This also means that Fn is isomorphic to Cn,
provided n is not a multiple of 3.

ANNALES DE L’INSTITUT FOURIER



2-FRIEZE PATTERNS AND THE MODULI SPACE OF POLYGONS 941

An n-gon {V1, . . . , Vn} in R3 is called convex if, for each i, all the vertices
Vj , j 6= i−1, i, lie on the positive side of the plane generated by Vi−1 and Vi,
that is, det(Vi−1, Vi, Vj) > 0. See Figure 1.1. Let C̃0

n ⊂ C̃n denote the space
of convex n-gons in R3. We show that the space of positive real 2-friezes
F0
n is isomorphic to the space of convex polygons C̃0

n.
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Figure 1.1. A convex polygon.

Remark 1.1. — A more general space of twisted n-gons in P2 (and sim-
ilarly in 3-dimensional vector space) was considered in [25, 21]. A twisted
n-gon in P2 is a map ϕ : Z → P2 such that no three consecutive points,
ϕ(i), ϕ(i+ 1), ϕ(i+ 2), belong to the same projective line and

ϕ(i+ n) = M(ϕ(i)),

where M ∈ PSL3 is a fixed element, called the monodromy. If the mon-
odromy is trivial, M = Id, then the twisted n-gon is an n-gon in the above
sense. In [25, 21] two different systems of coordinates were introduced and
used to study the space of twisted n-gons and the transformation under
the pentagram map.

1.3. Analytic version: the space of difference equations

Consider a difference equation of the form

(1.1) Vi = ai Vi−1 − bi Vi−2 + Vi−3,

where ai, bi ∈ C or R are n-periodic: ai+n = ai and bi+n = bi, for all i. A
solution V = (Vi) is a sequence of numbers Vi ∈ C or R satisfying (1.1).
The space of solutions of (1.1) is 3-dimensional. Choosing three independent

TOME 62 (2012), FASCICULE 3



942 Sophie MORIER-GENOUD, Valentin OVSIENKO & Serge TABACHNIKOV

solutions, we can think of Vi as vectors in C3 (or R3). The n-periodicity of
(ai) and (bi) then implies that there exists a matrix M ∈ SL3 called the
monodromy matrix, such that

Vi+n = M (Vi) .

The space of all the equations (1.1) is nothing other than the vector
space C2n (or R2n, in the real case), since (ai, bj) are arbitrary numbers.
The space of equations with trivial monodromy, M = Id, is an algebraic
manifold of dimension 2n − 8, since the condition M = Id gives eight
polynomial equations (of degree n− 3).
We show that the space of closed 2-frieze patterns Fn is isomorphic to

the space of equations (1.1) with trivial monodromy.

1.4. The pentagram map and cluster structure

The pentagram map, T , see Figure 1.2, was initially defined by
R. Schwartz [24] on the space of (convex) closed n-gons in RP2. This map
associates to an n-gon another n-gon formed by segments of the shortest
diagonals. Since T commutes with the SL(3,R)-action, it is well-defined on
the quotient space Cn. Complete integrability of T on Cn was conjectured
and partially established in [25].

T(P)

P

T(P)

P

Figure 1.2. The pentagram map.

The integrability results on the pentagram map were originally estab-
lished in the case of the space of twisted n-gons (see Remark 1.1). Com-
plete integrability of T on this space was proved in [21] and the relation to
cluster algebras was noticed. Explicit formulas for iterated pentagram map

ANNALES DE L’INSTITUT FOURIER
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T k were recently found [16] using an alternative system of parametriza-
tions of the twisted n-gons. These formulas involve the theory of cluster
algebras and Y -patterns. Here, we describe a structure of cluster manifold
on the space of closed n-gons, which is a different question. The relation of
our approach with the one by Glick deserves a thorough study; we plan to
consider this question in near future. It is not clear, at the time of writing,
how the cluster structure on the space Cn that we describe in this paper
is related to complete integrability of the map T on Cn proved in [27] and
[20].

2. Definitions and main results

2.1. Algebraic and numerical friezes

It is important to distinguish the algebraic 2-frieze patterns, where the
entries are algebraic functions, and the numerical ones where the entries
are real numbers.
Our starting point is the algebraic frieze bounded from above by a row

of 1’s (we also assume that there are two rows of 0’s above the first row of
1’s). We denote by Ai, Bi the entries in the first non-trivial row:

(2.1)

· · · 1 1 1 1 1 · · ·
· · · Bi Ai Bi+1 Ai+1 Bi+2 · · ·

...
...

...
...

...
The entries Ai, Bi are considered as formal free variables.

Proposition 2.1. — The first two non-zero rows of (2.1) uniquely de-
fine an unbounded (from below, left and right) 2-frieze pattern. Every entry
of this pattern is a polynomial in Ai, Bi.

This statement will be proved in Section 3.
We denote the defined 2-frieze by F (Ai, Bi).
Given a sequence of real numbers (ai, bi)i∈Z, we define a numerical 2-

frieze pattern F (ai, bi) as the evaluation
F (ai, bi) = F (Ai, Bi)

∣∣
Ai=ai, Bi=bi

.

Note that one can often recover the whole numerical frieze F (ai, bi) directly
from the two first rows (of 1’s and (ai, bi)) by applying the pattern rule but
this is not always the case. For instance this is not the case if there are too
many zeroes among {ai, bi}. In other words, there exist numerical friezes
that are not evaluations of F (Ai, Bi).

TOME 62 (2012), FASCICULE 3



944 Sophie MORIER-GENOUD, Valentin OVSIENKO & Serge TABACHNIKOV

Example 2.2. — The following 2-frieze pattern:
· · · 1 1 1 1 1 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 1 1 1 1 1 · · ·

is not an evaluation of some F (Ai, Bi). Indeed, if ai = bi = 0 for all i ∈ Z,
then the 4-th row in F (ai, bi) has to be a row of 1’s. This follows from
formula (3.2) below.

The above example is not what we called a numerical 2-frieze pattern
and we will not consider such friezes in the sequel. We will restrict our
considerations to evaluations of F (Ai, Bi).

2.2. Closed frieze patterns

A numerical 2-frieze pattern F (ai, bi) is closed if it contains a row of 1’s
followed by two rows of zeroes:

(2.2)

· · · 1 1 1 1 1 · · ·
· · · bi ai bi+1 ai+1 bi+2 · · ·

...
...

...
...

...
· · · 1 1 1 1 1 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·

...
...

...
...

...
The following statement is proved in Section 4.

Proposition 2.3. — A closed 2-frieze pattern of width (n− 4) has the
following properties.
(i) It is 2n-periodic in each row, i.e., vi+n,j+n = vi,j , in particular ai+n =

ai and bi+n = bi.
(ii) It is n-periodic in each diagonal, i.e., vi+n,j = vi,j and vi,j+n = vi,j .
(iii) It satisfies the following additional glide symmetry: vi,j = vj+n− 5

2 , i+
5
2
.

The statement of part (iii) means that, after n steps, the pattern is reversed
with respect to the horizontal symmetry axis.
As a consequence of Proposition 2.3, a closed 2-frieze of width n − 4

consists of periodic blocks of size (n − 2) × 2n. Taking into account the

ANNALES DE L’INSTITUT FOURIER
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symmetry of part (iii), the 2-frieze is determined by a fragment of size
(n− 2)× n.

Example 2.4. — (a) The following fragment completely determines a
closed 2-frieze of width 2.

. . . 1 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 1 1 4 6 2 1 2 3 2 2 4 3 . . .

. . . 2 3 2 2 4 3 1 1 4 6 2 1 . . .

. . . 1 1 1 1 1 1 1 1 1 1 1 1 . . .

The additional symmetry from Proposition 2.3, part (iii), switches the rows
every 6 steps.
(b) The following integral numerical 2-frieze pattern

. . . 1 1 1 1 1 1 1 1 1 1 1 1 . . .

. . . 1 3 5 2 1 3 5 2 1 3 5 2 . . .

. . . 5 2 1 3 5 2 1 3 5 2 1 3 . . .

. . . 1 1 1 1 1 1 1 1 1 1 1 1 . . .

is closed of width 2. This corresponds to n = 6 so that this 2-frieze pattern
is understood as 12-periodic (and not as 4-periodic!).

2.3. Closed 2-friezes, difference equations and n-gons

Consider an arbitrary numerical 2-frieze pattern F (ai, bi). By Proposi-
tion 2.3, a necessary condition of closeness is:

ai+n = ai, bi+n = bi

that we assume from now on. We then say that F (ai, bi) is 2n-periodic.
Associate to F (ai, bi) the difference equation (1.1). The first main result

of this paper is the following criterion of closeness. The statement is very
similar to a result of [5].

Theorem 2.5. — A 2n-periodic 2-frieze pattern F (ai, bi) is closed if
and only if the monodromy of the corresponding difference equation (1.1)
is trivial: M = Id.

This theorem will be proved in Section 4.
The variety Fn of closed 2-frieze patterns (2.2) is thus identified with the

space of difference equations (1.1) with trivial monodromy. The latter space
was considered in [21]. In particular, the following geometric realization
holds.

TOME 62 (2012), FASCICULE 3



946 Sophie MORIER-GENOUD, Valentin OVSIENKO & Serge TABACHNIKOV

Proposition 2.6. — [21] The space of difference equations (1.1) with
trivial monodromy is isomorphic to the space of SL3-equivalence classes of
polygons C̃n in 3-space. If n is not divisible by 3, then this space is also
isomorphic to the space Cn of projective equivalence classes of polygons in
the projective plane.

For completeness, we give a proof in Section 4.
It follows from Theorem 2.5 that the variety Fn is isomorphic to C̃n,

and also to Cn, provided n is not a multiple of 3. In order to illustrate
the usefullness of this isomorphism, in Section 4.5, we prove the following
statement.

Proposition 2.7. — All the entries of a real 2-frieze pattern are posi-
tive if and only if the corresponding n-gon in R3 is convex.

We understand convex n-gons in RP2 as polygons that lie in an affine
chart and are convex therein. If n is not a multiple of 3, then convexity
of an n-gon in R3 is equivalent to convexity of its projection to RP2, see
Section 4.5. In Section 4.6, we show that the space of convex 3m-gons is
isomorphic to the space of pairs of 2m-gons inscribed one into the other.
This space was studied by Fock and Goncharov [11, 10].

2.4. Cluster structure

The theory of cluster algebras introduced and developed by Fomin and
Zelevinsky [12]-[14] is a powerful tool for the study of many classes of
algebraic varieties. This technique is crucial for the present paper. Note that
the relation of octahedron recurrence and T -systems to cluster algebras is
well-known, see, e.g., [30, 7, 9, 8, 18]. Some of our statements are very
particular cases of known results and are given here in a more elementary
way for the sake of completeness.
It was first proved in [3] that the space of the classical Coxeter-Conway

friezes has a cluster structure related to the simplest Dynkin quiver An (see
also Appendix). In Section 5, we prove a similar result.
Consider the following oriented graph (or quiver) that we denote by Q:

(2.3)
1 // 2 oo

��

3 // · · · · · · oo n− 5 // n− 4

��
n− 3 oo

OO

n− 2 // n− 1

OO

oo · · · · · · // 2n− 9

OO

oo 2n− 8

ANNALES DE L’INSTITUT FOURIER
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if n is even, or with the opposite orientation of the last square if n is
odd (note that in the case n = 5 the graph consists only in two vertices
linked by one arrow). The graph Q is the product of two Dynkin quivers:
Q = A2 ∗An−4.

Example 2.8. — The graph (2.3) is a particular case of the graphs re-
lated to the cluster structure on Grassmannians, see [26]. The cluster al-
gebra considered in Section 5 can be viewed as a specialization of the one
considered by Scott. In particular, for n = 5, this is nothing else but the
simplest Dynkin graph A2. For n = 6, 7, 8, the graph Q is equivalent (by a
series of mutations) to D4, E6, E8, respectively. The graph Q is of infinite
type for n > 9. For n = 9, the graph Q is equivalent to the infinite-type
graph E1,1

8 . The relation of our approach with the one by Scott deserves a
thorough study.

The cluster algebra associated to Q is of infinite type for n > 9. In
Section 5.3, we define a finite subset Z in the set of all clusters associated
to Q. More precisely, the subset Z is the set of all clusters that can be
obtained from the initial cluster by series of mutations at vertices that do
not belong to two 3-cycles.

Theorem 2.9.
(i) The cluster coordinates (x1, . . . , xn−4, y1, . . . , yn−4)ζ , where ζ ∈ Z, de-
fine a biregular isomorphism between (C∗)2n−8 and a Zariski open subset
of Fn.
(ii) The coordinates (x1, . . . , xn−4, y1, . . . , yn−4)ζ restrict to a bijection

between R2n−8
>0 and F0

n.

Theorem 2.9 provides good coordinate systems for the study of the space
Cn, different from the known coordinate systems described in [25, 21].
We think that the “restricted” set of cluster coordinates Z is an interest-

ing object that perhaps has a more general meaning, this question remains
open. In Section 5.4, we define the so-called smooth cluster-type manifold
corresponding to the subset Z. The space of all 2-friezes Fn is precisely
this manifold completed by some singular points.
The following proposition is a typical statement that can be obtained

using the cluster structure. A double zig-zag is a choice of two adjacent
entries in each row of a pattern so that the pair of entries in each next row
is directly underneath the pair above it, or is offset of either one position
right or left, see Section 5.3 below for details.

TOME 62 (2012), FASCICULE 3



948 Sophie MORIER-GENOUD, Valentin OVSIENKO & Serge TABACHNIKOV

Proposition 2.10. — Every frame bounded from the left by a double
zig-zag of 1’s:

1 1 1 1 1 1 · · ·
1 1 · · ·

1 1 · · ·
1 1 · · ·
...

...
1 1 1 1 1 · · ·

can be completed (in a unique way) to a closed 2-frieze pattern with positive
integer entries.

This statement will be proved in Section 5.3. This is a direct generaliza-
tion of a Coxeter-Conway result [5].

2.5. Arithmetic 2-friezes

Let us consider closed 2-frieze patterns of period 2n consisting of posi-
tive integers (like in Example 2.4); we call such 2-friezes arithmetic. The
classification of such patterns is a fascinating problem formulated in [23].
This problem remains open.
In Section 6, we present an inductive method of constructing a large

number of arithmetic 2-frieze patterns. This is a step towards the classifi-
cation.

Consider two closed arithmetic 2-frieze patterns, F (ai, bi) and F (a′i, b′i),
one of them of period 2n and the other one of period 2k, with coefficients

b1, a1, b2, a2, . . . , bn, an b′1, a
′
1, b

′
2, a

′
2, . . . , b

′
k, a

′
k,

respectively. We call the connected summation the following way to glue
them together and obtain a 2-frieze pattern of period 2(n+ k − 3).

(1) Cut the first one at an arbitrary place, say between b2 and a2.
(2) Insert 2(k − 3) integers: a′2, b′3, . . . , a′k−2, b

′
k−1.

(3) Replace the three left and the three right neighbouring entries by:

(2.4)
(b1, a1, b2) → (b1 + b′1, a1 + a′1 + b2 b

′
1, b2 + b′2)

(a2, b3, a3) → (a2 + a′k−1, b3 + b′k + a2 a
′
k, a3 + a′k),

leaving the other 2(n− 3) entries b4, a4, . . . , bn, an unchanged.
In Section 6, we will prove the following statement.
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Theorem 2.11. — Connected summation yields a closed 2-frieze pat-
tern of period 2(n+ k − 3). If F (ai, bi) and F (a′i, b′i) are closed arithmetic
2-frieze patterns, then their connected sum is also a closed arithmetic 2-
frieze pattern.

In Sections 6.3 and 6.4, we explain the details in the first non-trivial cases:
k = 4 and 5, that we call “stabilization”.
The classical Coxeter-Conway integral frieze patterns were classified in

[5] with the help of a similar stabilization procedure. In particular, a beau-
tiful relation with triangulations of an n-gon (and thus with the Catalan
numbers) was found making the result more attractive. Unfortunately, the
above procedure of connected summation does not lead to classification
of arithmetic 2-frieze patterns. This is due to the fact that, unlike the
Coxeter-Conway integral frieze patterns, not every integral 2-frieze pattern
is a connected sum of smaller ones, see examples below.

3. Algebraic 2-friezes

The goal of this section, is to describe various ways to calculate the frieze
(2.1). This will imply Proposition 2.1.

3.1. The pattern rule

Recall that we denote by (vi,j)(i,j)∈Z2 and (vi+ 1
2 ,j+

1
2
)(i,j)∈Z2 the entries

of the frieze organized as follows

· · ·

I
I

I
I

I 1

MMMMMMMMMMMM

uuuuuuuuuuu 1

q q q q q q

MMMMMM 1

qqqqqqqqqqqq

IIIIIIIIIII · · ·

u
u

u
u

u

· · ·

HHHHHHHHHH vi− 1
2 ,i−

1
2

L
L

L
L

L

v
v

v
v

v
vi,i

rrrrrrrrrrr

LLLLLLLLLLL
vi+ 1

2 ,i+
1
2

H
H

H
H

H

r
r

r
r

r
· · ·

vvvvvvvvvv

· · ·

I
I

I
I

I vi,i−1

MMMMMMMMMMM

uuuuuuuuu
vi+ 1

2 ,i−
1
2

q q q q q q

MMMMMM
vi+1,i

qqqqqqqqqqq

IIIIIIIII · · ·

u
u

u
u

u

· · · · · · · · · · · · · · ·
In the algebraic frieze, we assume:

vi,i = Ai vi− 1
2 ,i−

1
2

= Bi,
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see (2.1).
The first way to calculate the entries in the frieze (2.1) is a direct induc-

tive application of the pattern rule.

3.2. The determinant formula

The most general formula for the elements of the pattern is the following
determinant formula generalizing that of Coxeter-Conway [5].

Proposition 3.1. — One has

(3.1) vi,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Aj Bj+1 1
1 Aj+1 Bj+2 1

. . . . . . . . . . . .
1 Ai−2 Bi−1 1

1 Ai−1 Bi
1 Ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for i > j ∈ Z. The element vi+ 1

2 ,j+
1
2
is obtained from vi,j by replacing

(Ak, Bk+1)→ (Bk+1, Ak+1).

Proof. — The 2-frieze pattern rule for vi−1/2,j+1/2 reads
vi−1,j vi,j+1 = vi−1,j+1 vi,j + vi− 1

2 ,j+
1
2
.

Using induction on i − j, understood as the row number, we assume that
the formula for vk,` holds for k−` < i−j, so that all the terms of the above
equality except vi,j are known. The result then follows from the Dodgson
formula. �

The algebraic frieze looks as follows:
(3.2)

1 1 1 1 1 · · ·

· · · A0 B1 A1 B2 · · ·

· · · A0A1 −B1 B1B2 −A1 A1A2 −B2 · · ·

. . . A0A1A2 −A2B1 B1B2B3 −A1B3 . . .

−A0B2 + 1 −A2B1 + 1

A0A1A2A3 −A2A3B1
· · · −A0A3B2 −A0A1B3 . . .

+B1B3 +A0 +A3
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3.3. Recurrence relations on the diagonals

Let us introduce the following notation.
(1) The diagonals pointing “North-East” (that contain all the elements

vi,. with i fixed); are denoted by ∆i.
(2) The diagonals pointing “South-East” (that contain all the elements

v.,j with j fixed) are denoted by ∆j .
(3) The (horizontal) rows {vi,j | i− j = const} are denoted by Ri−j .

∆j−1

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
∆j− 1

2

""D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

∆j

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ∆i<<

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
∆i+ 1

2<<

z
z

z
z

z
z

z
z

z
z

z
z

z
z

z
z

∆i+1<<

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Ri−j

//

Ri−j+1
//

Proposition 3.2. — One has the following recurrence relations. For all
i ∈ Z,

(3.3)
∆i = Ai∆i−1 −Bi∆i−2 + ∆i−3,

∆i = Ai∆i+1 −Bi+1∆i+2 + ∆i+3,

and

(3.4)
∆i+ 1

2
= Bi+1∆i− 1

2
−Ai∆i− 3

2
+ ∆i− 5

2
,

∆i+ 1
2

= Bi+1∆i+ 3
2
−Ai+1∆i+ 5

2
+ ∆i+ 7

2
.

Proof. — Straighforward using the determinant formula (3.1). �

Note also that the difference equations (3.3) and (3.4) are dual to each
other, see [21].

3.4. Relation to SL3-tilings

An SLk-tiling is an infinite matrix such that any principal k × k-minor
(i.e., a minor with contiguous row and column indices) is equal to 1. These
SLk-tilings were introduced and studied in [2]. Following [2], we note that
an algebraic 2-frieze pattern contains two SL3-tilings.
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Proposition 3.3. — The subpatterns (vi,j)i,j∈Z and (vi,j)i,j∈Z+ 1
2
of

F (Ai, Bi) are both SL3-tilings.

Proof. — Using Dodgson’s formula, one obtains∣∣∣∣∣∣
vi−1,j−1 vi−1,j vi−1,j+1
vi,j−1 vi,j vi,j+1
vi+1,j−1 vi+1,j vi+1,j+1

∣∣∣∣∣∣ vi,j
=
∣∣∣∣ vi−1,j−1 vi−1,j
vi,j−1 vi,j

∣∣∣∣ ∣∣∣∣ vi,j vi,j+1
vi+1,j vi+1,j+1

∣∣∣∣
−
∣∣∣∣ vi−1,j vi−1,j+1
vi,j vi,j+1

∣∣∣∣ ∣∣∣∣ vi,j−1 vi,j
vi+1,j−1 vi+1,j

∣∣∣∣
= vi− 1

2 ,j−
1
2
vi+ 1

2 ,j+
1
2
− vi− 1

2 ,j+
1
2
vi+ 1

2 ,j−
1
2

= vi,j .

If follows from Proposition 3.1, that vi+1,j−1 6= 0. One obtains∣∣∣∣∣∣∣∣
vi,j−2 vi,j−1 vi,j

vi+1,j−2 vi+1,j−1 vi+1,j

vi+2,j−2 vi+2,j−1 vi+2,j

∣∣∣∣∣∣∣∣ = 1.

Hence the result. �

The two SL3-tilings are dual to each other in the sense of [2]. The converse
statement also holds: one can construct a 2-frieze pattern from an SL3-tiling
by superimposing the tiling on its dual, see [2].

4. Numerical friezes

In this section, we prove Propositions 2.3, 2.6, 2.7 and Theorem 2.5. We
also discuss a relation with a moduli space of Fock-Goncharov [11, 10].

4.1. Entries of a numerical frieze

Consider a numerical 2-frieze F (ai, bi). Its entries vi,j can be expressed as
determinants involving solutions of the corresponding difference equation
(1.1), understood as vectors in 3-space.
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Lemma 4.1. — One has

(4.1) vi,j = |Vj−3, Vj−2, Vi| , vi− 1
2 ,j−

1
2

= |Vi−1, Vi, Vj−3| ,

where V = (Vi) is any solution of (1.1) such that |Vi−2, Vi−1, Vi| = 1.

Proof. — Consider the diagonal ∆j of the frieze, its elements vi,j are
labeled by one index i ∈ Z. We proceed by induction on i.

The base of induction is given by the three trivial elements vj−3,j =
vj−2,j = 0 and vj−1,j = 1 which obviously satisfy (4.1).
The induction step is as follows. According to formula (3.3), the elements

vi,j satisfy the recurrence (1.1). One then has

vi,j = ai vi−1,j − bi vi−2,j + vi−3,j

= ai |Vj−3, Vj−2, Vi−1| − bi |Vj−3, Vj−2, Vi−2|+ |Vj−3, Vj−2, Vi−3|

= |Vj−3, Vj−2, aiVi−1 − biVi−2 + Vi−3|

= |Vj−3, Vj−2, Vi.|

Hence the result.
The proof in the half-integer case is similar. �

4.2. Proof of Proposition 2.3

Consider a numerical frieze F (ai, bi) and assume that this frieze is closed,
as in (2.2), of width n− 4. Choosing the diagonal ∆i, let us determine the
last non-trivial element vi+n−5,i:

1 1 1 1 1 1 1
ai

. . .

vi+n−5,i

1 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Using the first recurrence relation in (3.3), one has

vi+n−2,i = ai+n−2 vi+n−3,i − bi+n−2 vi+n−4,i + vi+n−5,i.

This implies vi+n−5,i = bi+n−2, since vi+n−2,i = vi+n−3,i = 0 and
vi+n−4,i = 1. On the other hand, using the second recurrence relation
in (3.3), one has

vi+n−5,i−3 = ai−3 vi+n−5,i−2 − bi−2 vi+n−5,i−1 + vi+n−5,i.

This implies vi+n−5,i = bi−2. Combining these two equalities, one has n-
periodicity:

bi+n−2 = bi−2.

Similarly, choosing the diagonal ∆i+ 1
2
, one obtains n-periodicity of the ai.

Finally, 2n-periodicity on the first two rows implies 2n-periodicity on each
row. Part (i) is proved.
In order to prove Part (ii), we continue to determine the entries of ∆i:

vi+n−5,i

1
0

0
1

vi+n,i

Using (3.3), we deduce that vi+n−1,i = 1 and, using this relation again,

vi+n,i = ai+n = ai = vi,i, i ∈ Z

and similarly for i ∈ Z + 1
2 . Part (ii) is proved.

Part (iii) follows from the equalities vi+n−5,i = bi+n−2 = bi−2 proved in
Part (i). Indeed, in the first non-trivial row, bi−2 = vi− 5

2 ,i−
5
2
, so that we

rewrite the above equality as follows: vi,i = vi+n− 5
2 ,i+

5
2
. This means that

the first non-trivial row is related to the last one by the desired glide sym-
metry. Then using the 2-frieze rule we deduce that the same glide symmetry
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relates the second row with the one before the last, etc.

1
RRRRR

oo n //

1
llllllllll · · · 1

RRRR

oo n

1
lllllllll

NNNNNNNN · · ·
p p p

v 1
2 ,

1
2

QQQQQQQQ v1,1

m m m m m

��

vn
2−2,n

2 +3

QQQQQQQQQ??
vn

2−
3
2 ,

n
2 + 7

2

m m m m m
M

M
M

· · ·

qqqqqqqq

v1,n

TTTTT v 3
2 ,

1
2

kkkkkkkkkk · · ·

QQQQQQQQQ

m m m m m v1,n

QQQQQQQQQ
v 3

2 ,
1
2

m m m m
M

M
M

qqqqqqqq

vn
2−2,n

2 +3

RRRRR
vn

2−
3
2 ,

n
2 + 7

2

llllllll
v 1

2 ,
1
2

RRRRR v1,1

llllllllll
NNNNNN · · ·

p p p p

1 1 · · · 1 1 · · ·

Proposition 2.3 is proved.

4.3. Proof of Theorem 2.5

Given a closed numerical frieze F (ai, bi), let us show that all the solutions
of the corresponding difference equation (1.1) are periodic. Proposition
2.3, Part (ii) implies that all the diagonals ∆j are n-periodic. Take three
consecutive diagonals, say ∆1,∆2,∆3, they provide linearly independent
periodic solutions (vi,1, vi,2, vi,3) to (1.1). It follows that every solution is
periodic, so that the monodromy matrix M is the identity.

Conversely, suppose that all the solutions of (1.1) are periodic, i.e. the
monodromy is the identity. Consider the frieze F (ai, bi). We have proved
that the diagonals ∆i with i ∈ Z satisfy the recurrence equation (3.3),
which is nothing else but (1.1). Add formally two rows of zeroes above the
first row of 1’s:

· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 1 1 1 1 1 · · ·
· · · bi ai bi+1 ai+1 bi+2 · · ·

...
...

...
...

...
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One checks immediately that this changes nothing in the recurrence rela-
tion. It follows that the diagonals ∆i with i ∈ Z are periodic.

The diagonals ∆i with i ∈ Z + 1
2 satisfy the recurrence equation (3.4).

This is precisely the difference equation dual to (1.1). The corresponding
monodromy is the conjugation of the monodromy of (1.1), so that it is
again equal to the identity. It follows that the half-integer diagonals are
also periodic.
In particular, two consecutive rows of 0’s followed by a row of 1’s will

appear again. These rows are necessarily preceded by a row 1’s in order to
satisfy (3.3) and (3.4). The 2-frieze pattern is closed.

4.4. Difference equations, and polygons in space and in the
projective plane

In this section, we prove Proposition 2.6.
The relation between the difference equations (1.1) and polygons was

already established in Section 1.3 (combined with Section 1.2). A difference
equation has a 3-dimensional space of solutions, and these solutions form
a sequence of vectors satisfying (1.1). If the monodromy is trivial then the
sequence of vectors is n-periodic. The sequence of the Vi (as vector in 3-
dimensional space) then gives a closed polygon (otherwise, it is twisted). It
follows from (1.1) that the determinant of every three consecutive vectors
is the same. One can scale the vectors to render this determinant unit, and
then the SL3-equivalence class of the polygon is uniquely determined.
Conversely, a polygon satisfying the unit determinant condition gives rise

to a difference equation (1.1): each next vector is a linear combination of
the previous three, and one coefficient is equal to 1, due to the determinant
condition. Two SL3-equivalent polygons yield the same difference equation,
and a closed polygon yields an equation with trivial monodromy.
To prove that the projection C̃n → Cn is bijective for n not a multiple of 3,

let us construct the inverse map. Given an n-gon (vi) in the projective plane,
let Ṽi be some lift of the point vi to 3-space. We wish to rescale, Vi = tiṼi,
so that the unit determinant relation holds: det(Vi−1, Vi, Vi+1) = 1 for all
i. This is equivalent to the system of equations

ti−1titi+1 = 1/ det(Ṽi−1, Ṽi, Ṽi+1)

(the denominators do not vanish because every triple of consecutive vertices
of a polygon is not collinear). This system has a unique solution if n is
not a multiple of 3. Furthermore, projectively equivalent polygons in the
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projective plane yield SL3-equivalent polygons in 3-space. This completes
the proof of Proposition 2.6.

Remark 4.2. — Two points in RP2 determine not one, but two segments,
and a polygon in RP2, defined as a cyclic collection of vertices, does not
automatically have sides, i.e., segments connecting consecutive vertices. For
example, three points in general position determine four different triangles,
thought of as triples of segments sharing end-points. In contrast, for a
polygon (Vi) in R3, the sides are the segments ViVi+1. Thus, using the
above described lifting, one can make a canonical choice of sides of an n-
gon in RP2, provided that n is not a multiple of 3. Changing the orientation
of a polygon does not affect the choice of the segments. The choice of the
segments does not depend on the orientation of R3 either.

4.5. Convex polygons in space and in the projective plane

The proof of Proposition 2.7 is immediate now. According to
formula (4.1), all the entries of a real 2-frieze pattern are positive if and
only if the respective polygon in R3 is convex, as claimed.

We shall now discuss the relation between convexity in space and in the
projective plane. An n-gon (vi) in RP2 is called convex if there exists an
affine chart in which the closed polygonal line v1v2 . . . vn is convex. The
space of convex n-gons in RP2 is denoted by C0

n.

Lemma 4.3. — If (Vi) is a convex n-gon in space then its projection to
RP2 is a convex n-gon. Conversely, if n is not a multiple of 3 and (vi) is a
convex n-gon in RP2 then its lift to R3 is a convex n-gon.

Proof. — Let (Vi) be a convex n-gon in space. Let π be the oriented
plane spanned by V1 and V2. Let V ε1 and V ε2 be points on the negative side
of π that are ε-close to V1 and V2. Let πε be the plane spanned by V ε1
and V ε2 . If ε is a sufficiently small positive number, all the points Vi lie on
one side of πε. Without loss of generality, we may assume that πε is the
horizontal plane and all points Vi are in the upper half-space. Consider the
radial projection of the polygon (Vi) on the horizontal plane at height one.
This plane provides an affine chart of RP2. The resulting polygon, (vi), has
the property that, for every i and every j 6= i−1, i, the vertex vj lies on the
positive side of the line vi−1vi. Hence this projection is a convex polygon
in this plane.
Conversely, let (vi) be a convex polygon in the projective plane. As be-

fore, we assume that the vertices are located in the horizontal plane in

TOME 62 (2012), FASCICULE 3



958 Sophie MORIER-GENOUD, Valentin OVSIENKO & Serge TABACHNIKOV

R3 at height one. Convexity implies that the polygon lies on one side
of the line through each side, that is, with the proper orientation, that
det(vi−1, vi, vj) > 0 for all i and j 6= i − 1, i. One needs to rescale the
vectors, Vi = tivi, to achieve the unit determinant condition on triples of
consecutive vectors. Since the determinants are already positive, it follows
that ti > 0 for all i. Therefore det(Vi−1, Vi, Vj) > 0 for all i and j 6= i−1, i,
and (Vi) is a convex polygon. �

4.6. The space C3m and the Fock-Goncharov variety

Consider the special case of the space Cn with n = 3m. As already
mentioned, in this case, the space Cn is not isomorphic to the space of
difference equations (1.1) and therefore it is not isomorphic to the space
of closed 2-frieze patterns. We discuss this special case for the sake of
completeness and because it provides an interesting link to another cluster
variety.
In [11, 10] (see also [22], Section 6.5) Fock and Goncharov introduced

and thoroughly studied the space Pn consisting of pairs of convex n-gons
(P, P ′) in RP2, modulo projective equivalence, such that P ′ is inscribed
into P .
The following statement relates the space P2m and the space C0

3m of
convex 3m-gons.

Proposition 4.4. — The space C0
3m is isomorphic to the space P2m.

Proof. — The proof consists of a construction, see Figure 4.1. Consider
a convex 3m-gon.

(1) Choose a vertex vi and draw the short diagonal (vi−1, vi+1).
(2) Extend the sides (vi, vi+1) and (vi+2, vi+3) to their intersection

point.
(3) Repeat the procedure starting from vi+3.

One obtains a pair of 2m-gons inscribed one into the other. The procedure
is obviously bijective and commutes with the SL(3,R)-action. �

Remark 4.5. — Choosing the vertex vi+1 or vi+2 in the above construc-
tion, one changes the identification between the spaces C0

3m and P2m. This,
in particular, defines a map τ from P2m to P2m, such that τ3 = Id.
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Figure 4.1. From a hexagon to a pair of inscribed quadrilaterals

5. Closed 2-friezes as cluster varieties

We now give a description of the space of all closed 2-frieze patterns.
This is an 8-codimensional subvariety of the space C2n (or R2n) identified
with the space of 2n-periodic patterns. We will characterize this variety
using the technique of cluster manifolds.

5.1. Cluster algebras

Let us recall the construction of Fomin-Zelevinsky’s cluster algebras [12].
A cluster algebra A is a commutative associative algebra. This is a subal-
gebra of a field of rational fractions in N variables, where N is called the
rank of A. The algebra A is presented by generators and relations. The
generators are collected in packages called clusters, the relations between
generators are obtained by applying a series of specific elementary rela-
tions called the exchange relations. The exchange relations are encoded via
a matrix, or an oriented graph with no loops and no 2-cycles.
The explicit construction of the (complex or real) cluster algebra A(Q)

associated to a finite oriented graph Q is as follows. Let N be the number of
vertices of Q, the set of vertices is then identified with the set {1, . . . , N}.
The algebra A(Q) is a subalgebra of the field of fractions C(x1, . . . , xN )
in N variables x1, . . . , xN (or over R, in the real case). The generators
and relations of A(Q) are given using a recursive procedure called seed
mutations that we describe below.
A seed is a couple

Σ = ({t1, . . . , tN}, R) ,
where R is an arbitrary finite oriented graph with N vertices and where
t1, . . . , tN are free generators of C(x1, . . . , xN ). The mutation at vertex k

of the seed Σ is a new seed µk(Σ) defined by
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• µk({t1, . . . , tN}) = {t1, . . . , tk−1, t
′
k, tk+1, . . . , tN} where

t′k = 1
tk

 ∏
arrows in R

i→k

ti +
∏

arrows in R
i←k

ti


• µk(R) is the graph obtained fromR by applying the following trans-

formations
(a) for each possible path i→ k → j in R, add an arrow i→ j,
(b) reverse all the arrows leaving or arriving at k,
(c) remove all the possible 2-cycles,

(see Example 5.1 below for a seed mutation).
Starting from the initial seed Σ0 = ({x1, . . . , xN},Q), one produces N

new seeds µk(Σ0), k = 1, . . . , N . Then one applies all the possible mutations
to all of the created new seeds, and so on. The set of rational functions
appearing in any of the seeds produced during the mutation process is
called a cluster. The functions in a cluster are called cluster variables. The
cluster algebra A(Q) is the subalgebra of C(x1, . . . , xN ) generated by all
the cluster variables.

Example 5.1. — In the case n = 4, consider the seed

Σ = ({t1, t2, t3, t4},R),

where
R = 1 // 2

��
3 oo

OO

4
The mutation at vertex 1 gives

µ1({t1, t2, t3, t4}) =
{ t2 + t3

t1
, t2, t3, t4

}
and

µ1(R) = 1 oo 2

��

@@

��������

3 oo
��

4
In this example, one can show that the mutation process is finite. This

means that applying all the possible mutations to all the seeds leads to
a finite number of seeds and therefore to a finite number (24) of cluster
variables. One can also show that among the graphs obtained through
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iterated mutations is the Dynkin graph of type D4. The cluster algebra
A(R) in this example is referred to as the cluster algebra of type D4.

5.2. The algebra of regular functions on Fn

In the case of the oriented graph (2.3), the cluster algebra A(Q) has an
infinite number of generators (for n > 9). In this section, we consider the
algebra of regular functions on Fn and show that this is a subalgebra of
A(Q). From now on, Q always stands for the oriented graph (2.3).

The space of closed 2-friezes Fn is an algebraic manifold, Fn ⊂ C2n (or
R2n in the real case), defined by the trivial monodromy condition M =
Id, that can be written as 8 polynomial identities. The algebra of regular
functions on Fn is then defined as

An = C[A1, . . . , An, B1, . . . , Bn]/I,
where I is the ideal generated by (M − Id). Let us describe the algebra An
in another way.
We define the following system of coordinates on the space Fn. Consider

2n − 8 independent variables (x1, . . . , xn−4, y1, . . . , yn−4) and place them
into two consecutive columns on the frieze:

(5.1)

1 1 1 1 1 · · ·
x1 y1 · · ·
y2 x2 · · ·
x3 y3 · · ·
y4 x4 · · ·
...

...
1 1 1 1 1 · · ·

Applying the recurrence relations, complete the 2-frieze pattern by rational
functions in xi, yj . Since the 2-frieze pattern (5.1) is closed, Proposition 2.3
implies that the closed 2-frieze pattern (5.1) contains n(n − 4) distinct
entries modulo periodicity.
Example 5.2. — Case n = 5

· · · 1 1 1 1 1 1 1 · · ·

· · · x y y+1
x

x+y+1
xy

x+1
y x y · · ·

· · · 1 1 1 1 1 1 1 · · ·
In this case, A5 ' A(1→ 2).
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Example 5.3. — Case n = 6

· · · 1 1 1 1 1 1 1 1 · · ·

· · · x1 y1
y1+x2
x1

(y1+x2)(y2+x1)
x1y1y2

(x1+y2)(x2+y1)
x2y1y2

x1+y2
x2

y2 x2 · · ·

· · · y2 x2
x2+y1
y2

(x2+y1)(x1+y2)
y2x2x1

(y2+x1)(y1+x2)
y1x1x2

y2+x1
y1

x1 y1 · · ·

· · · 1 1 1 1 1 1 1 1 · · ·

In this case, the algebra A6 is isomorphic to a proper subalgebra of A(D4).

Proposition 5.4. — (i) The algebraAn is isomorphic to the subalgebra
of the algebra of rational functions C(x1, . . . , xn−4, y1, . . . , yn−4) generated
by the entries of the 2-frieze (5.1).
(ii) The algebra An is a subalgebra of the cluster algebra A(Q), where

Q is the graph (2.3).

Proof. — (i) The entries of (5.1) are polynomials in 2n consecutive en-
tries of the first row (see Proposition 3.1). The isomorphism is then obtained
by sending B1, A1, . . . , Bn, An to the entries of the first line.
(ii) Consider Σ0 = ({x1, . . . , xn−4, y1, . . . , yn−4},Q) as an initial seed.

The variable xi is associated to the vertex i of Q and the variable yi to the
vertex n− 4 + i. We need to prove that all the entries of (5.1) are cluster
variables.
The graph Q is bipartite. One can associate a sign ε(i) = ± to each

vertex of the graph so that any two connected vertices in Q have different
signs. Let us assume that ε(1) = + (this determines automatically all the
signs of the vertices).
Following Fomin-Zelevinsky [14], consider the iterated mutations

µ+ =
∏

i:ε(i)=+

µi, µ− =
∏

i:ε(i)=−

µi.

Note that µi with ε(i) fixed commute with each other.
It is important to notice that the result of the mutation of the graph

(2.3) by µ+ and µ− is the same graph with reversed orientation:

µ+(Q) = Qop, µ−(Qop) = Q.

This is a straightforward verification.
Consider the seeds of A(Q) obtained from Σ0 by applying successively

µ+ or µ−:

(5.2) Σ0, µ+(Σ0), µ−µ+(Σ0), . . . , µ±µ∓ · · ·µ−µ+(Σ0), . . .
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This set is called the bipartite belt of A(Q), see [14]. The cluster variables
in each of the above seeds correspond precisely to two consecutive columns
in the 2-frieze pattern (5.1).
Proposition 5.4 is proved. �

Remark 5.5. — Periodicity of the sequence (5.2) follows from Proposi-
tion 2.3. This periodicity of closed 2-frieze patterns, expressed in cluster
variables, is a particular case of the general periodicity theorem in clus-
ter algebra, see [30, 18] and references therein. Our proof of this result is
based on simple properties of solutions of the difference equation (1.1) and
is given for the sake of completeness.

5.3. Zig-zag coordinates

In this section, we prove Theorem 2.9 and Proposition 2.10. To this end,
we introduce a number of coordinate systems on the space of 2-friezes.

We define another system of coordinates on Fn. Draw an arbitrary double
zig-zag in the 2-frieze (5.1) and denote by (x̃1, . . . , x̃n−4, ỹ1, . . . , ỹn−4) the
entries lying on this double zig-zag:

(5.3)

· · · 1 1 1 1 1 · · ·
x̃1 ỹ1

x̃2 ỹ2

x̃3 ỹ3
...

...
· · · 1 1 1 1 1 · · ·

in such a way that x̃i stay at the entries with integer indices and ỹi stay
at the entries with half-integer indices.
More precisely, a double zig-zag of coordinates is defined as follows. The

coordinates x̃i and ỹi in the i-th row, are followed by the coordinates x̃i+1
and ỹi+1 in one of the three possible ways:

x̃i

{{wwwwww
ỹi

}}{{{{{
x̃i

##GGGGGG ỹi

{{wwwwww
x̃i

!!CCCCC ỹi

##GGGGGG

x̃i+1 ỹi+1 ỹi+1 x̃i+1 x̃i+1 ỹi+1

Denote by Z the set of all double zig-zags. For an arbitrary double zig-
zag ζ ∈ Z, the corresponding functions (x̃1, . . . , x̃n−4, ỹ1, . . . , ỹn−4)ζ are
rational expressions in (xi, yi).
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Proposition 5.6. — (i) For every double zig-zag ζ ∈ Z, the coordinates
(x̃i, ỹi)ζ form a cluster in the algebra A(Q), where Q is the graph (2.3).
(ii) A cluster in A(Q) coincides with the coordinate system (x̃i, ỹi)ζ for

some ζ ∈ Z, if and only if it is obtained from the initial cluster (xi, yi) by
mutations at vertices that do not belong to two 3-cycles.

Proof. — (i) For every double zig-zag ζ, we define a seed Σζ =
((xi, yi)ζ ,Qζ) in the algebra A(Q), where Qζ is the oriented graph as-
sociated to ζ defined as follows.

The fragments of zig-zags:

x̃i ỹi

x̃i+1 ỹi+1

x̃i ỹi

ỹi+1 x̃i+1

x̃i ỹi

x̃i+1 ỹi+1

correspond, respectively, to the following subgraphs:

x̃i //
aa

BBBBBBBB x̃i+1

��
ỹi //
��

ỹi+1

x̃i oo x̃i+1OO

ỹi //
��

ỹi+1

x̃i oo x̃i+1

��

==

||||||||

ỹi oo
��

ỹi+1

for i even and with reversed orientation for i odd. Similarly, the fragments

ỹi x̃i

ỹi+1 x̃i+1

ỹi x̃i

x̃i+1 ỹi+1

ỹi x̃i

ỹi+1 x̃i+1

correspond to

x̃i // x̃i+1OO

}}||||||||

ỹi //

OO

ỹi+1

x̃i // x̃i+1

��
ỹi oo

OO

ỹi+1

x̃i oo

!!BBBBBBBB x̃i+1OO

ỹi oo

OO

ỹi+1

for i even and with reversed orientation for i odd. Applying this recurrent
procedure, one defines an oriented graph Qζ .
For every double zig-zag ζ, there is a series of zig-zags ζ1, ζ2, . . . , ζk such

that ζi and ζi+1 differ in only one place, say x̃`i
, ỹ`i

, and such that ζk is
the double column (5.1). It is easy to check that every “elementary move”
ζi → ζi+1 is obtained by a mutation of coordinates (x̃i, ỹi)ζi

, while the
corresponding graph Qζi+1 is a mutation of Qζi

.
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(ii) Every graph Qζ that we construct in the seeds corresponding to
zig-zag coordinates is of the form
(5.4)

1 // 2 oo

��

3 //::

uuuuuuuuu cc

FFFFFFFFF · · · · · · oo n− 5 // n− 4

��
n− 3 oo

OO

n− 2 oo n− 1
��

// · · · · · · // 2n− 9

OO

oo 2n− 8

That is, Qζ is the initial graph (2.3) with some diagonals added (such that
the triangles and empty squares are cyclically oriented). Conversely, from
every such graph, one immediately constructs a double zig-zag.
A graph of the form (5.4) can be obtained from the initial graph Q

by a series of mutations at the vertices that do not belong to triangles.
Conversely, a mutation at a vertex on a triangle changes the nature of the
graph (it removes sides of squares). �

Example 5.7. — Consider a double-diagonal, it can be “redressed” to
a double-column by a series of elementary moves, for instance in the case
n = 7,

ỹ1 x̃1

ỹ2 x̃2

ỹ3 x̃3

→
x̃′1 ỹ1

ỹ2 x̃2

ỹ3 x̃3

→
x̃′1 ỹ1

ỹ2 x̃2

x̃3 ỹ′3

The corresponding graphs are:

1 oo 2

��

oo
@@

�����
3

��

@@

�����

4 oo
��

5 oo 6

µ1 //
1 // 2

��

oo 3

��

@@

�����

4 oo

OO

5 oo 6

µ6 //
1 // 2

��

oo 3OO

4 oo

OO

5 // 6

We are ready to prove Theorem 2.9.
Part (i). It follows from the Laurent phenomenon for cluster algebras [13]

that all the entries of the frieze (5.3) are Laurent polynomials in any zig-
zag coordinates (x̃i, ỹi)ζ . Therefore, for every double zig-zag ζ, we obtain
a well-defined map from the complex torus (C∗)2n−8 to the open dense
subset of Fn consisting of 2-friezes with non-vanishing entries on ζ. Hence
the result.
Part (ii). Assume that the coordinates (x̃i, ỹi)ζ are positive real num-

bers. It then follows from the 2-frieze rule that all the entries of the frieze
are positive. Therefore, every system of coordinates (x̃i, ỹi)ζ identifies the
subspace F0

n with R2n−8
>0 .

Theorem 2.9 is proved.
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Let us also prove Proposition 2.10. Consider an arbitrary double zig-
zag ζ. The set of coordinates (x̃1, . . . , x̃n−4, ỹ1, . . . , ỹn−4)ζ forms a cluster.
Proposition 2.10 then follows from the Laurent phenomenon.

5.4. The cluster manifold of closed 2-friezes

The two systems of coordinates (x̃i, ỹi)ζ and (x̃i, ỹi)ζ′ , where ζ and ζ ′

are two double zig-zags, can be reached from one another by a series of
mutations.
Consider all the coordinate systems corresponding to different double

zig-zags. We call the cluster manifold of 2-friezes the smooth analytic (com-
plex) manifold obtained by gluing together the complex tori (C∗)2n−8 via
the consecutive mutations.
The cluster manifold of 2-friezes is not the entire algebraic variety Fn.

Indeed, the smooth cluster manifold of 2-friezes consists of the 2-friezes
that have at least one double zig-zag with non-zero entries. However, the
full space Fn also contains singular points.

To give an example, consider n = km with k,m > 3 and take an n-gon
obtained as an m-gon traversed k times. The corresponding closed 2-frieze
pattern (of width n−4) contains double rows of zeroes (this readily follows
from formula (4.1)). This 2-frieze pattern does not belong to the smooth
cluster manifold of 2-friezes.

Remark 5.8. — In the cases n = 6, 7, 8, Scott [26] proved that the cluster
algebra built out of the graph (2.3) is isomorphic to the coordinate ring of
the Grassmannian Gr(3, n). In these algebras, Plücker coordinates form a
proper subset of the set of cluster variables (14 Plücker coordinates among
16 cluster variables for n = 6, 28 among 42 for n = 7 and 48 among 128 for
n = 8). It can be checked that the n(n− 4) cluster variables arising in the
2-frieze of width n − 4 are also Plücker coordinates. However, we do not
know if there is a nice way to characterize them using Scott’s approach (in
terms of Postnikov arrangement or root correspondence).

5.5. The symplectic structure

The complete integrability of the pentagram map [21] was deduced from
the existence of an invariant Poisson structure on the space of twisted n-
gons. In general, completely integrable dynamics is usually associated with
invariant symplectic or Poisson structure - thus our interest in this question.
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Every cluster manifold has a canonical (pre)symplectic form, i.e., a closed
differential 2-form, see [15]. Let us recall here the general definition. For an
arbitrary seed Σ = ({t1, . . . , tN}, R) on a cluster manifold, the 2-form is
as follows:

(5.5) ω =
∑

arrows in R
i→j

dti
ti
∧ dtj
tj
.

It is then easy to check that the 2-form ω is well-defined, that is, does
not change under mutations. The 2-form ω is obviously closed (since it
is constant in the coordinates log ti). However, this form is not always
symplectic and may be degenerate.
One of the consequence of the defined cluster structure is the existence

of such a form on the cluster manifold of 2-friezes. It turns out that this
form is non-degenerate, for n 6= 3m.

Proposition 5.9. — (i) The differential 2-form (5.5) on Fn is symplec-
tic if and only if n 6= 3m.
(ii) If n = 3m, then the form (5.5) is a presymplectic form of corank 2.

Proof. — It suffices to check the statement for the initial seed Σ0 =
({x1, . . . , xn−4, y1, . . . , yn−4},Q), where Q is the graph (2.3). The form
(5.5) then corresponds to the following skew-symmetric (2n−8)× (2n−8)-
matrix

ω(n) =



0 1 0 0 · · · 0 0 −1
−1 0 −1 0 · · · 0 1 0

0 1 0 1 · · · −1 0 0
. . .

0 0 1 0 · · · 0 −1 0
0 −1 0 0 · · · 1 0 1
1 0 0 0 · · · 0 −1 0


which is nothing other than the incidence matrix of the graph (2.3) (for
technical reasons we inverse the labeling of the second line). We need to
check that this matrix is non-degenerate if and only if n 6= 3m and has
corank 2 otherwise.
(i) We proceed by induction on n. First, one easily checks the statement

for small n. Indeed, for n = 5, n = 6 and n = 7, the matrix ω(n) is as
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follows:

(
0 1
−1 0

)
,


0 1 0 −1
−1 0 1 0

0 −1 0 1
1 0 −1 0


and 

0 1 0 0 0 −1
−1 0 −1 0 1 0

0 1 0 −1 0 0
0 0 1 0 −1 0
0 −1 0 1 0 1
1 0 0 0 −1 0


respectively.
Next, the matrix ω(n) is non-degenerate if and only if ω(n − 3) is non-

degenerate. Indeed, denote by N = 2n−8 the size of the matrix ω(n). Add
the columns (N − 2) and N to the column 2, and add rows (N − 2) and N
to row 2. One obtains

0 0 0 0 0 −1
0 0 0 −1 0 −1 0
0 0 0 1 −1 0 0

−1
−ω(n− 3)

1 1
0 0 1 −1 0 −1 0
0 1 0 1 0 1
1 0 0 0 −1 0


Then, one can subtract column 2 from column N − 2, add column 1 to
column N − 1 and do similar operations on the rows. This leads to a block
of zeroes in the right down corner. Then one can easily remove the extra
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±1’s to finally obtain

0 0 0 0 0 −1
0 0 0 (0) 0 −1 0
0 0 0 −1 0 0

(0) −ω(n− 3) (0)

0 0 1 0 0 0
0 1 0 (0) 0 0 0
1 0 0 0 0 0


The result follows.
(ii) Let now n = 3m. The (2n− 10)× (2n− 10)-minor:

(ω(n)ij) , 2 6 i, j 6 2n− 9
coincides with the matrix −ω(n − 1) which is non-degenerate as already
proved in Part (i). Therefore, the matrix ω(n) is, indeed, of corank 2. �

Remark 5.10. — In the case n = 3m, one can explicitly find a linear
combination of the rows of ω(n) that vanishes:∑

06i<[m/2]

(`6i+1 + `N−6i−1)−
∑

16i<[m/2]

(`6i−1 + `N−6i+3) ,

where N = 2n− 8, so that ω(n) is, indeed, degenerate.

6. Arithmetic 2-friezes

We consider now closed numerical 2-friezes whose entries are positive
integers, that is, arithmetic 2-friezes. The problem of classification of such
2-frieze patterns was formulated in [23] and interpreted as a generalization
of the Catalan numbers. The problem remains open.

In this section, we describe a stabilization process that is a step toward
solution of this problem. It is natural to consider a 2-frieze pattern that can
be obtained by stabilization as “trivial”. We thus formulate a problem of
classification of those patterns that cannot be obtained this way. Likewise,
it is natural to call a 2-frieze pattern prime if it is not the connected sum of
non-trivial 2-frieze patterns. The classification of prime arithmetic 2-friezes
is also a challenging problem.
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It was shown in [5] that every (classical Coxeter-Conway) arithmetic
frieze pattern contains 1 in the first non-trivial row and can be obtained by
a simple procedure from a pattern of lower width. This provides a complete
classification of Coxeter-Conway. Our stabilization is quite similar to the
classical Coxeter-Conway stabilization. However, unlike the classical case,
classification of 2-frieze patterns does not reduce to stabilization (cf. for
instance Example 6.7).
We start this section with the simplest examples.

6.1. Arithmetic 2-friezes for n = 4, 5

The case n = 4 is the first case where the notion of 2-frieze pattern makes
sense. The unique 8-periodic pattern is the following one

(6.1)
· · · 1 1 1 1 1 1 1 1 · · ·
· · · 1 1 1 1 1 1 1 1 · · ·

which is the most elementary 2-frieze pattern.
If n = 5, the answer is as follows.

Proposition 6.1. — The 2-frieze pattern

(6.2)
· · · 1 1 1 1 1 1 1 1 1 1 · · ·
· · · 1 1 2 3 2 1 1 2 3 2 · · ·
· · · 1 1 1 1 1 1 1 1 1 1 · · ·

is the unique arithmetic 2-frieze pattern of width 1.

Proof. — According to Proposition 2.3, Parts (ii), (iii), an integral 2-
frieze pattern of width 1 is of the form

· · · 1 1 1 1 1 1 1 · · ·
· · · b0 a0 b1 a1 b2 b0 a0 · · ·
· · · 1 1 1 1 1 1 1 · · ·

Let us show that every number {b0, a0, b1, a1, b2} is less than or equal to 3.
One has from (5.2):

b1 = a0 + 1
b0

, b2 = b0 + 1
a0

.

Therefore, there exist positive integers k, ` such that b0 + 1 = k a0 and
a0 + 1 = ` b0. Hence

(6.3) a0 = `+ 1
k `− 1 .

ANNALES DE L’INSTITUT FOURIER



2-FRIEZE PATTERNS AND THE MODULI SPACE OF POLYGONS 971

Assume a0 > 3, then ` (3k − 1) < 4. Since k, ` are positive integers, the
only possibility is k = ` = 1. This contradicts (6.3).

Once one knows that the entries do not exceed 3, the proof is completed
by a brief exhaustive search. �

6.2. Arithmetic 2-friezes for n = 6

The classification in this case is as follows.

Proposition 6.2. — The following 5 patterns:

(6.4)

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1

(6.5)

1 1 1 1 1 1 1 1 1 1 1 1
1 3 5 2 1 3 5 2 1 3 5 2
5 2 1 3 5 2 1 3 5 2 1 3
1 1 1 1 1 1 1 1 1 1 1 1

(6.6)

1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 4 4 2 1 1 2 4 4 2
1 1 2 4 4 2 1 1 2 4 4 2
1 1 1 1 1 1 1 1 1 1 1 1

(6.7)

1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 6 3 1 1 2 3 3 3 2
1 2 3 3 3 2 1 1 3 6 3 1
1 1 1 1 1 1 1 1 1 1 1 1

(6.8)

1 1 1 1 1 1 1 1 1 1 1 1
1 1 4 6 2 1 2 3 2 2 4 3
2 3 2 2 4 3 1 1 4 6 2 1
1 1 1 1 1 1 1 1 1 1 1 1

is the complete (modulo dihedral symmetry) list of 12-periodic arithmetic
2-frieze patterns.
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Proof. — We sketch an elementary, albeit somewhat tedious, proof.
Let a be the greatest common divisor of x1, y2, and b that of x2, y1. Then

x1 = ax̄1, y2 = aȳ2, x2 = bx̄2, y1 = bȳ1

where the pairs x̄1, ȳ2 and x̄2, ȳ1 are coprime. Set: p = x1 +y2, q = x2 +y1.
Consider Example 5.3. From the third column we see that q = kx1 = `y2

for some k, ` ∈ Z+. Hence k = Aȳ2, ` = Ax̄1 for A ∈ Z+, and q = Aax̄1ȳ2.
Likewise, p = Bbx̄2ȳ1. Thus

a(x̄1 + ȳ2) = Bb x̄2ȳ1, b(x̄2 + ȳ1) = Aa x̄1ȳ2.

Multiply these two equations, cancel ab, and rewrite in an equivalent form:

(6.9) AB =
(

1
x̄2

+ 1
ȳ1

)(
1
x̄1

+ 1
ȳ2

)
.

This Diophantine equation has just a few solutions, and this leads to the
desired classification.
Before we list the solutions of (6.9), let us remark that the 4th and 5th

columns of the 2-frieze in Example 5.3 consist of the following integers:
ABx̄2

a
,

ABȳ1

a
,

ABx̄1

b
,

ABȳ2

b
.

Therefore, once A,B, x̄1, x̄2, ȳ1, ȳ2 are found, one can determine the denom-
inators, a and b, by inspection.
Now we analyze equation (6.9). First of all, at least one denominator

must be equal to 1. If not, then the value of each parenthesis does not
exceed 1/2 + 1/3 = 5/6, and their product is less than 1. If 1 is present in
the denominator in both parentheses then we have a Diophantine equation(

1 + 1
x

)(
1 + 1

y

)
= AB ∈ Z+

that, up to permutations, has the solutions (1, 1), (2, 1) and (2, 3). The
respective values of AB are 4, 3 and 2. These solutions correspond to the
2-friezes (6.4) and (6.6), (6.7), and (6.8), respectively.
If 1 is present in the denominator in only one parenthesis then we have

a Diophantine equation(
1 + 1

x

)(
1
z

+ 1
y

)
= AB ∈ Z+

where the second parenthesis does not exceed 5/6. It follows that x ∈
{1, 2, 3, 4, 5}. A case by case consideration yields one more solution: x = 5
and {y, z} = {2, 3}. The respective value of AB is 1, and this corresponds
to the 2-frieze (6.5). �
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Remark 6.3. — Note that we have listed 2-friezes only up to dihedral
symmetry. To be consistent with the case of the Coxeter-Conway friezes,
where the count is given by the Catalan numbers, one should count the cases
separately, that is, not to factorize by the dihedral group or its subgroups.
Then the number of 2-friezes for n = 4, 5, 6, 7 is as follows: 1, 5, 51, 868.
These numbers appeared in [23]. We have independently verified this using
an applet created by R. Schwartz for this purpose. The 2-frieze pattern
of Proposition 6.1 gives 5 different patterns. The patterns of Proposition
6.2 contribute 1,8,6,12 and 24 different patterns, respectively. We do not
have a proof that 868 is the correct answer, nor can we prove that the
number of arithmetic 2-friezes is finite for each n. We hope to return to this
fascinating combinatorial problem in the near future. Curiously, the only
appearance of the sequence 1, 5, 51, 868 in Sloane’s Online Encyclopedia
[29] is in connection with Propp’s paper [23].

6.3. One-point stabilization procedure

Below we describe a procedure that allows one to obtain 2-frieze pat-
terns of width m+ 1 from 2-frieze patterns of width m. More precisely, we
consider 2n-periodic 2-frieze patterns whose first non-trivial row contains
two consecutive entries equal to 1. Such a pattern can be obtained from a
2(n− 1)-periodic pattern and, in this sense, may be considered “trivial”.

Proposition 6.4. — Let

. . . b1, a1, b2, a2, b3, a3 . . .

be the first non-trivial row that generates a 2n-periodic arithmetic 2-frieze
as in (2.2). Then the frieze with the first non-trivial row
(6.10)
. . . bn, an, b1+1, a1+b2+1, b2+1, 1, 1, a2+1, b3+a2+1, a3+1, b4, a4 . . .

is a 2(n+ 1)-periodic arithmetic 2-frieze.

In other words, we cut the line between b2 and a2, add 1, 1 and change
the three left neighbours:

(b1, a1, b2)→ (b1 + 1, a1 + b2 + 1, b2 + 1)

and similarly with the three right neighbours. The other entries remain
unchanged.
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Proof. — Let (Vi) be a solution to the difference equations (1.1) associ-
ated to the initial frieze. We assume that Vi ∈ R3. We wish to add an extra
point W ∈ R3 so that the points

Ṽi = Vi, i 6 n,

Ṽn+1 = W,

give a solution to the difference equation

Ṽi = ãi Ṽi−1 − b̃i Ṽi−2 + Ṽi−3.

Geometrically speaking, we replace the n-gon {V1, . . . , Vn} by the (n+ 1)-
gon {V1, . . . , Vn,W}.

It is easy to check that the choice of W is unique:

(6.11) W = (b2 + a1 + 1)Vn − (b1 + 1)Vn−1 + Vn−2.

The coefficients of the resulting equation are as follows

b̃n+1 ãn+1 b̃1 ã1 b̃2 ã2 b̃3 ã3

q q q q q q q q
b1 + 1 a1 + b2 + 1 b2 + 1 1 1 a2 + 1 b3 + a2 + 1 a3 + 1

while b̃i = bi and ãi = ai for 4 6 i 6 n. This corresponds to (6.10).
The frieze F (ãi, b̃i) generated by (6.10) is again integral. Indeed, the

entries of this frieze are polynomials in ãi, b̃i, see formula (3.1). It remains
to prove positivity of the frieze F (ãi, b̃i).

In the frieze F (ãi, b̃i), we choose two consecutive diagonals ∆1 and ∆ 3
2
.

Their entries are ṽi,1 and ṽi+ 1
2 ,

3
2
, respectively, where 1 6 i 6 n − 3. Ac-

cording to formula (4.1), one has:

ṽi,1 = |Vn, Vn−1, Vi| , ṽi+ 1
2 ,

3
2

= |Vi, Vi+1, Vn| .

Therefore, these entries do not depend on Ṽn+1 = W and, furthermore, all
these entries belong to the initial frieze F (ai, bi). Hence, ṽi,1 and ṽi+ 1

2 ,
3
2

are positive integers.
Finally, according to the rule of 2-friezes, the diagonals ∆1 and ∆ 3

2
de-

termine the rest and, moreover, all the entries are positive, see Theorem
2.9. �

Remark 6.5. — It is clear that in the above stabilization process, one
can cut the first non-trivial line of F (ai, bi) at an arbitrary place (and not
only between b2 and a2).
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Let us describe the geometry of one-point stabilization. The new point,
W , is inserted between Vn and V1. One has the relation

V2 = a2V1 − b2Vn + Vn−1;

it follows that
a2V1 − V2 = b2Vn − Vn−1 =: U.

One can easily check that

(6.12) W = U + Vn + V1.

It follows from the definition of U that
det(Vn−1, Vn, U) = det(V1, V2, U) = 0, det(Vn−2, Vn−1, U)

= b2 > 0, det(V2, V3, U) = a2 > 0.

Hence the vector U belongs to the intersection of the two planes spanned
by the pairs of vectors (Vn−1, Vn) and (V1, V2). Furthermore, U is on the
positive side of the two planes spanned by the pairs of vectors (Vn−2, Vn−1)
and (V2, V3). Using the same central projection as in the proof of Lemma
4.3, we conclude that the n − 1-gon . . . Vn−2, Vn−1, U, V2, V3, . . . in the
horizontal plane is convex, see Figure 6.1. This implies the inequalities
det(Vi−1, Vi, U) > 0 for i 6= n, 1, 2. In view of (6.12) and the convexity of
the polygon (Vj), these inequalities imply that det(Vi−1, Vi,W ) > 0.

v

n!2

n!1

n

3

2

1

U

v

v

v

v

v

Figure 6.1. Position of point U

The following statement is a reformulation of Proposition 6.4.
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Corollary 6.6. — An arithmetic 2-frieze pattern of width m > 1 can
be obtained via one-point stabilization from a pattern of width m − 1 if
and only if the second row (bi, ai) contains two consecutive ones.

Example 6.7. — (a) The only 10-periodic 2-frieze pattern (6.2) is ob-
tained by stabilization from the most elementary pattern (6.1). In this
sense, there are no non-trivial 10-periodic integral patterns.
(b) All the patterns of width 2, see Section 6.2, except the first and the

second, are obtained by stabilization from (6.2). One therefore is left with
two non-trivial 12-periodic integral patterns, namely (6.4) and (6.5).

6.4. Connected sum

We are ready to analyze the general connected summation and to prove
Theorem 2.11. Let us start with an example.

Example 6.8. — Consider the connected sum of the pentagon (6.2) with
the hexagon (6.4). Cut the first row of (6.2) as follows: 112 | 3211232, insert
six 2’s, and change the two triples of neighbors of the block of 2’s as required
to obtain a 16-periodic arithmetic 2-frieze pattern corresponding to an
octagon:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 7 4 2 2 2 2 2 2 5 10 3 1 2 3 2

11 5 10 6 2 2 2 2 8 15 5 7 5 1 1 7
8 15 5 7 5 1 1 7 11 5 10 6 2 2 2 2
2 5 10 3 1 2 3 2 3 7 4 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We now turn to the proof of Theorem 2.11. Let us start with the remark
that the roles played by the patterns F (ai, bi) and F (a′i, b′i) in the definition
of connected sum are the same: interchanging the two results in the same
pattern.
First, we prove that the connected sum of two closed 2-frieze patterns is

also closed. Let (Vi) be an n-gon corresponding to the difference equation
(1.1), and let (Uj) be a k-gon corresponding to a similar equation with
coefficients a′j , b′j . Consider a new difference equation with coefficients

B1 = b′1 + b1, A1 = a′1 + a1 + b′1b2, B2 = b′2 + b2, A2 = a′2,

B3 = b′3, A3 = a′3, . . . , Bk−1 = b′k−1, Ak−1 = a′k−1 + a2,

Bk = b′k + b3 + a′ka2, Ak = a′k + a3.
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A solution to this equation is a sequence of pointsWm in R3; we may choose
W−2,W−1,W0 to be the standard basis. The polygon (Wm) is twisted:
one has Wm+k = M (Wm) for all m. The linear transformation M is the
monodromy of Wm.
Assume that the vectors Vn−2, Vn−1, Vn also constitute the standard basis

(this can be always achieved by applying a transformation from SL3).

Lemma 6.9. — The transformationM takes Vn−2, Vn−1, Vn to V1, V2, V3.

Proof. — Let us start with some generalities about difference equations
and their monodromies (see [21] for a detailed discussion). Consider the
difference equation (1.1). Let us construct its solution Vi choosing the initial
condition V−2, V−1, V0 to be the standard basis in R3. This is done by
building a 3×∞ matrix in which each next column is a linear combination
of the three previous ones, as prescribed by (1.1):
(6.13)

1 0 0 1 a2 a2a3 − b3 . . .

0 1 0 −b1 −b1a2 + 1 −b1a2a3 + a3 + b1b3 . . .

0 0 1 a1 a1a2 − b2 a1a2a3 − b3a1 − a3b2 + 1 . . .

 .

Three consecutive columns in the matrix (6.13) are also given by the prod-
uct N1N2 . . . Nr of 3× 3 matrices of the form

(6.14) Nj =

 0 0 1
1 0 −bj
0 1 aj

 .

With this preparation, we can compute the monodromyM of the twisted
polygon (Wm). ThusM is given as a product of matrices as in (6.14) where
all matrices, except the first two and the last two, are the same as for the
polygon (Uj). The product of the first two is:
(6.15)

0 0 1
1 0 −B1

0 1 A1




0 0 1
1 0 −B2

0 1 A2



=


0 1 a′2

0 −b1 − b′1 −b1a
′
2 + 1− b′1a′2

1 a1 + b2b
′
1 + a′1 a1a

′
2 − b2 + b′1a

′
2b2 + a′1a

′
2 − b′2

 ,
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and the product of the last two is:
(6.16)

0 0 1
1 0 −Bk−1

0 1 Ak−1




0 0 1
1 0 −Bk
0 1 Ak



=


0 1 a′k + a3

0 −b′k−1 1− b′k−1a
′
k − b′k−1a3

1 a′k−1 + a2 a′ka
′
k−1 + a′k−1a3 + a2a3 − b′k − b3

 .

Next, we observe that the matrices (6.15) and (6.16) decompose as
1 0 0
−b1 1 0
a1 −b2 1




0 1 a′2

0 −b′1 1− b′1a′2
1 a′1 a′1a

′
2 − b′2


and 

0 1 a′k

0 −b′k−1 1− b′k−1a
′
k

1 a′k−1 a′k−1a
′
k − b′k




1 a2 a2a3 − b3

0 1 a3

0 0 1


respectively. Thus M is the product of k + 2 matrices, and the product of
the “inner" k of them is the monodromy of the closed k-gon (Uj), that is,
the identity matrix. What remains is the product of the first and the last
matrices:

1 0 0
−b1 1 0
a1 −b2 1




1 a2 a2a3 − b3

0 1 a3

0 0 1



=


1 a2 a2a3 − b3

−b1 −b1a2 + 1 −b1a2a3 + a3 + b1b3

a1 a1a2 − b2 a1a2a3 − b3a1 − a3b2 + 1

 .

The last matrix is the fourth 3 by 3 minor in (6.13), that is, it takes
V−2, V−1, V0 to V1, V2, V3, as claimed. �

Due to Lemma 6.9, the connected summation under consideration is the
following procedure: arrange, by applying a volume preserving linear trans-
formation, that the vertices W−2,W−1,W0 of the twisted polygon (Wm)
coincide with Vn−2, Vn−1, Vn, and insert k − 3 vertices W1,W2, . . . ,Wk−3
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between Vn and V1. By Lemma 6.9, the vertices Wk−2,Wk−1,Wk will coin-
cide with V1, V2, V3. Thus a segment of length k+ 3 of the twisted polygon
(Wm) is pasted onto the polygon (Vi) over coinciding triples of vertices on
both ends. We have constructed a closed (n+ k − 3)-gon

{W1, W2, . . . ,Wk−3, V1, V2, . . . , Vn}

satisfying the difference equation with coefficients as described in Theorem
2.11.
Now we need to show that the connected sum of two arithmetic 2-frieze

patterns is arithmetic as well. The argument is similar to the proof of
Proposition 6.4. The entries of the new pattern are polynomials in the
entries of the first row, hence, integers. It remains to show that they are
positive. For that purpose, we show there is a positive double zig-zag and
refer to the positivity of Theorem 2.9.

Consider the (n + k − 3)-gon corresponding to the connected sum, and
assume that its vertices labeled 1 through n are the vertices of the n-gon
V1, . . . , Vn. Let Vn+1, . . . , Vn+k−3 be the remaining vertices. Consider the
consecutive diagonals ∆n+2 and ∆n+ 5

2
. According to formula (4.1), the en-

tries of these two diagonals are |Vi, Vn−1, Vn| and |Vi, Vi+1, Vn|, respectively.
For i = 1, 2, . . . , n − 3, these determinants are positive because the points
involved are vertices of a convex n-gon (Vj).
We claim that |Vi, Vn−1, Vn| and |Vi, Vi+1, Vn| are also positive for i =

n + 2, n + 3, . . . , n + k − 3. Indeed, reversing the roles of the n-gon and
k-gon in the construction of connected sum, we may assume that the k
consecutive points Vn−1, Vn, . . . , Vn+k−3, V1 are the vertices of a convex
k-gon (Uj). This yields the desired positivity.
Theorem 2.11 is proved.

Remark 6.10. — The procedure of connected sum can be understood
directly from the friezes as a vertical gluing of two friezes. More precisely,
the connected sum consists in choosing two consecutive columns in each
frieze and connecting them on the pair 1 1. The connected two columns
give two consecutive columns in the new frieze. For instance in Example
6.8, the new frieze is obtained by connecting the columns

1 1
2 2
2 2
1 1

and
1 1
2 3
1 1

of the friezes (6.4) and (6.2) respectively, one of the top of the other.
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This procedure do not allow to obtain all the arithmetic friezes of a given
width. However, there exists a more general procedure, for which the gluing
is not necessarily on a pair of ones, that allows to construct more friezes.
This procedure will be described in a separate work.

6.5. Examples of infinite arithmetic 2-frieze patterns

In this section, we give examples of infinite arithmetic 2-frieze patterns
bounded above by a row of 1’s and on the left by a double zig-zag of 1’s.

Example 6.11. — In the following 2-frieze dots mean that the entries in
the row stabilize.

1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 3 . . .

1 1 3 6 6 . . .

1 1 4 10 10 . . .

1 1 5 15 15 . . .

1 1 6 21 21 . . .

The first two non-trivial South-East diagonals consist of consecutive posi-
tive integers and of consecutive binomial coefficients.
Example 6.12. — In the next example, we choose two vertical arrays of

1’s as the double zig-zag. As before, dots mean stabilization.
1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 4 5 5 . . .

1 1 2 6 15 20 20 . . .

1 1 2 6 21 56 76 76 . . .

1 1 2 6 21 77 209 285 285 . . .

1 1 2 6 21 77 286 780 1065 1065 . . .

1 1 2 6 21 77 286 1066 2911 3976 3976 . . .

The pattern is clear: all rows and all columns stabilize; the stabilization
starts along two parallel South-East diagonals, and there is one other diago-
nal between the two, consisting of the numbers 1, 4, 15, 56, 209, 780, 2911, . . .
The respective numbers in the two stabilizing diagonals differ by 1. It fol-
lows that the numbers on the diagonal between the two are the differences
between the consecutive numbers on either of the stabilizing diagonals.
The numbers dn on the upper stabilizing diagonal 1, 5, 20, 76, 285, 1065,

3976, . . . satisfy the relation

dn+1 = dn(dn − 1)
dn−1
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that follows from the 2-frieze relation. One learns from Sloane’s Encyclo-
pedia [29] that these numbers also satisfy a linear recurrence

dn+1 = 4dn − dn−1 + 1,

which can be easily proved by induction on n. Solving the above linear
recurrence is standard.

Example 6.13. — In the next example, the double zig-zag of 1’s indeed
looks like a zig-zag:

1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 6 5 6 5 6 5

1 1 5 14 14 31 19 31 19 31
1 1 2 3 14 70 47 157 66 157 66

1 1 5 14 42 353 155 793 221 793
1 1 2 3 14 70 131 1782 507 4004 728

1 1 5 14 42 353 417 8997 1652 20216
1 1 2 3 14 70 131 1782 1341 45425 5373

In this 2-frieze pattern, the horizontal and vertical stabilization is different
from the previous examples: each row and each column is eventually 2-
periodic. There are five different South-East diagonals. Interestingly, they
are all in Sloane’s Encyclopedia [29]. We list them here, along with their
Sloane’s numbers:

1, 2, 5, 14, 42, 131, 417, . . . A080937;
1, 3, 14, 70, 353, 1782, 8997, . . . A038213;
1, 4, 14, 47, 155, 507, 1652, . . . A094789;
1, 6, 31, 157, 793, 4004, 20216, . . . A038223;
1, 5, 19, 66, 221, 728, 2380, . . . A005021.

7. Appendix: Frieze patterns of Coxeter-Conway,
difference equations, polygons,
and the moduli space M0,n

In this appendix we review the classical case of Coxeter-Conway frieze
patterns in their relation with second order difference equations, polygons
in the plane and in the projective line, and the configuration space of the
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projective line. We refer to [6, 5] for information on frieze patterns; see also
[19] and [28] for details concerning some of our remarks.(1)
As before, we consider the space Cn of polygons in P1, that is, n-tuples

of cyclically ordered points (vi) such that vi 6= vi+1 for all i. Polygons in P1

are considered modulo projective equivalence. Let C̃n be the space of origin
symmetric 2n-gons (Vi) in the plane satisfying the determinant condition
|Vi, Vi+1| = 1 for all i. Polygons in the plane are considered modulo SL2-
equivalence.
Another relevant space is the moduli spaceM0,n of stable curves of genus

zero with n distinct marked points, defined as the space of ordered n-tuples
of points in CP1 modulo projective equivalence:

M0,n =
{

(v1, . . . , vn) ∈ CP1 |vi 6= vj , i < j
}
/PSL(2,C).

The spaceM0,n is classical, and it continues to play an important role in
the current research (see, e.g., [1]). We show in this Appendix thatM0,n is
an open dense subset of a cluster manifold, provided n is odd (this condition
is a 1-dimensional counterpart to the condition that n is not a multiple of
3 that we encountered earlier). This cluster structure is closely related to
that on the Teichmuller space, see [11], but it is more difficult to construct.
We did not find an appropriate reference in the literature [4]. We use the
classical Coxeter-Conway friezes (with coefficients in C). The space M0,n
coincides with the subset of friezes such that all the entries are different
from 0. This observation is rather simple but we did not find it explicitly
in the literature. Two immediate consequences are as follows.

(1) One obtains several natural coordinate systems on M0,n, one of
which is compatible with a cluster structure. More precisely,M0,n
is a smooth cluster manifold of type An−3.

(2) Many objects related to M0,n, such as discrete versions of KdV,
etc., can be formulated in terms of Coxeter-Conway friezes.

Space C̃n, difference equations and Coxeter-Conway friezes. We
consider the following, infinite and row n-periodic, frieze pattern:

· · · 1 1 1 1 · · ·
Ci Ci+1 Ci+2 Ci+3 Ci+4

· · · · · · · · · · · ·

(1)We strongly recommend R. Schwartz’s applet http://www.math.brown.edu/~res/
Java/Frieze/Main.html
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where Ci(= Ci+n) are formal variables and where all the entries are poly-
nomials determined by the first row via the frieze rule AD − BC = 1, for
each elementary square:

B

A D

C

For instance, the entries in the next row are: CiCi+1 − 1, etc. As before, a
numerical frieze F (ci) = F (Ci)|Ci=ci

is obtained by evaluation.

Remark 7.1. — In order to give a correct definition of space of friezes,
one has to adapt the technique of algebraic friezes and treat Ci as formal
variables. Otherwise, the frieze rule does not suffice to determine the entries
of the pattern (if too many of ci vanish), cf. Section 2.1.

An n-periodic frieze pattern is closed if it contains a row of 1’s (followed
by a row of 0’s).

· · · 1 1 1 1 · · ·
ci ci+1 ci+2 ci+3 ci+4

· · · · · · · · · · · ·
· · · 1 1 1 1 · · ·

The width (the number of non-trivial rows) of the above frieze pattern is
equal to n− 3, see [5].

One associates a second order difference equation with periodic coeffi-
cients with a closed frieze pattern:

(7.1) Vi+1 = ci Vi − Vi−1; ci+n = ci.

We understand its solutions (Vi) as vectors in the plane satisfying the
relation |Vi, Vi+1| = 1. Equation (7.1) determines the polygon (Vi) uniquely,
up to SL2-action.

We label (vi,j)i,j∈Z the entries of the frieze, such that vi,i = ci, and
according to the scheme:

vi,j

vi,j−1 vi+1,j

vi+1,j−1

Analogs of Proposition 3.1, Proposition 3.2 and Lemma 4.1 hold true pro-
viding explicit formulæ. Namely, one has:

vi,j = |Vi, Vj |,
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and

(7.2) vi,j =

∣∣∣∣∣∣∣∣∣∣∣

cj 1
1 cj+1 1

. . . . . . . . .
1 ci−1 1

1 ci

∣∣∣∣∣∣∣∣∣∣∣
.

As a consequence of these formulæ, Vi+n = −Vi for all i, that is, the
monodromy of equation (7.1) is −Id ∈ SL2. This provides the equivalence
between closed frieze patterns and the space of polygons C̃n.

Polygons in the plane and in the projective line. As before, one
has a natural projection C̃n → Cn from R2 to RP1. If n is odd then this is a
bijection, cf. Section 4.4. This provides an equivalence between projective
equivalence classes of n-gons in CP1 and SL2-equivalence classes of origin
symmetric 2n-gons C2, subject to the unit determinant condition.

Note that, over reals, there is an additional obstruction to lifting a poly-
gon from RP1 to R2. Let n be odd and (vi) be a polygon in the projective
line. Let Vi ∈ R2 be some lifting of points vi. For the system of equations

titi+1 = 1/|Vi, Vi+1|, i = 1, . . . , n− 1, t1tn = 1/|V1, Vn|

to have a real solution, one needs Πn
i=1|Vi, Vi+1| > 0. If this condition holds

then ti is uniquely determined, up to a common sign; otherwise there is a
lifting satisfying the opposite condition |Vi, Vi+1| = −1 for all i.

Cluster coordinates. The space of friezes has another natural coor-
dinate system apart from ci. Unlike the coordinates ci that satisfy three
very non-trivial equations given by the condition that the frieze pattern is
closed, the new coordinates are free. These three conditions are as follows:

v0,n−1 = 1, v−1,n−1 = 0, v0,n = 0

where vi,j are given by the determinants (7.2) (the fourth condition, v−1,n =
−1, follows from the fact that the monodromy is area-preserving).
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An arbitrary zig-zag (i.e. piecewise linear path from top to bottom such
that each segment goes either down-right or down-left) filled by the vari-
ables x1, . . . , xn−3

1 1 1 · · ·
x1 · · ·

x2 · · ·
x3 · · ·

x4 · · ·
· · · · · ·

1 1 1 · · ·

determines the rest of the pattern. The subalgebra of C(x1, . . . , xn−3) gen-
erated by all the rational functions arising in the pattern is the cluster
algebra associated to the quiver of type An−3, see [3]. The initial zig-zag
(x1, . . . , xn−3) forms the initial cluster, and to different zig-zags correspond
different clusters. However, some clusters are not obtained as zig-zags in
the pattern. In type An−3 there is a correspondence between clusters and
triangulations of a n-gon [12] (see also [26]). The clusters which are not
zig-zags in the frieze correspond to triangulations containing inner trian-
gles (i.e. triangles built on three diagonals).
One then constructs a smooth cluster manifold gluing together the tori

(C∗)n−3 according to the coordinate changes defined by consecutive muta-
tions.

Proposition 7.2. — The space M0,n is a smooth submanifold of the
constructed cluster manifold.

Proof. — The fact that vi 6= vj for all 1 6 i < j 6 n in the definition of
M0,n, is equivalent to the fact that all the entries of the corresponding frieze
vi,j 6= 0. Therefore, the points ofM0,n are non-singular in any chart. �

Example 7.3. — If n = 5, then one has

1 1 1 · · ·
x1

x2+1
x1

x1+1
x2

x2 · · ·
x2

x1+x2+1
x1x2

x1 · · ·
1 1 1 1 · · ·

which correspond to the A2-case, quite similarly to Example 5.2.
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The cluster structure on M0,n, with n = 2m + 1, that we have just
constructed, coincides with that communicated to us by F. Chapoton [4].
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