Nous définissons une représentation des groupes d’Artin de type
We define a representation of the Artin groups of type
Mot clés : groupes d’Artin, représentation de Krammer
Keywords: Artin groups, Krammer representation
@article{AIF_2007__57_6_1883_0, author = {Marin, Ivan}, title = {Sur les repr\'esentations de {Krammer} g\'en\'eriques}, journal = {Annales de l'Institut Fourier}, pages = {1883--1925}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {6}, year = {2007}, doi = {10.5802/aif.2317}, mrnumber = {2377890}, language = {fr}, url = {https://www.numdam.org/articles/10.5802/aif.2317/} }
TY - JOUR AU - Marin, Ivan TI - Sur les représentations de Krammer génériques JO - Annales de l'Institut Fourier PY - 2007 SP - 1883 EP - 1925 VL - 57 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2317/ DO - 10.5802/aif.2317 LA - fr ID - AIF_2007__57_6_1883_0 ER -
%0 Journal Article %A Marin, Ivan %T Sur les représentations de Krammer génériques %J Annales de l'Institut Fourier %D 2007 %P 1883-1925 %V 57 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2317/ %R 10.5802/aif.2317 %G fr %F AIF_2007__57_6_1883_0
Marin, Ivan. Sur les représentations de Krammer génériques. Annales de l'Institut Fourier, Tome 57 (2007) no. 6, pp. 1883-1925. doi : 10.5802/aif.2317. https://www.numdam.org/articles/10.5802/aif.2317/
[1] Braid groups are linear, J. Am. Math. Soc., Volume 14 (2001), pp. 471-486 | DOI | MR | Zbl
[2] Braids, Link polynomials and a new algebra, Trans. Amer. Math. Soc., Volume 313 (1989), pp. 249-273 | DOI | MR | Zbl
[3] Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, Volume 126, Springer-Verlag, New-York, 1991 | MR | Zbl
[4] Groupes et algèbres de Lie, chap.4,5,6, Hermann, Paris, 1968 | MR | Zbl
[5] Sur les groupes de tresses [d’après V.I. Arnol’d], Séminaire Bourbaki, 24e année (1971/1972), Exposé401, Lecture Notes in Math., Volume 317, Springer, Berlin, 1973, pp. 21-44 | Numdam | Zbl
[6] Zyclotomische Heckealgebren, Astérisque, Soc. Math. France, Volume 212 (1993), pp. 7-92 | MR | Zbl
[7] Complex reflection groups, braid groups, Hecke algebras, J. reine angew. Math., Volume 500 (1998), pp. 127-190 | MR | Zbl
[8] On the image of the Lawrence-Krammer representation, J. Knot Theory Ramifications, Volume 14 (2005), pp. 773-789 | DOI | MR | Zbl
[9] Calculation of the monodromy of some
[10] BMW Algebras of simply laced type, J. Algebra, Volume 286 (2005), pp. 107-153 | DOI | MR | Zbl
[11] Linearity of Artin groups of finite type, Israel J. Math., Volume 131 (2002), pp. 101-123 | DOI | MR | Zbl
[12] Décompositions de groupes par produit direct et groupes de Coxeter arXiv :math.GR/0507366, à paraître dans les actes de la conférence ‘Asymptotic and Probabilistic Methods in Geometric Group Theory’ à Genève (juin 2005) | Zbl
[13] Injective maps between Artin groups, in ‘Geometric group theory down under’, De Gruyter, 1999 | Zbl
[14] The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. Math., Volume 145 (2001), pp. 19-36 | DOI | MR | Zbl
[15] On the linearity of Artin braid groups, J. Algebra, Volume 268 (2003), pp. 39-57 | DOI | MR | Zbl
[16] On quasitriangular quasi-Hopf algebras and a group closely connected with
[17] Quasi-reflection algebras, multiple polylogarithms at roots of 1, and analogues of the group GT (prépublication arXiv :math.QA/0408035)
[18] Pure braid groups and products of free groups, Braids (Santa Cruz, CA, 1986) (Contemp. Math.), Volume 78, Amer. Math. Soc., 1988, pp. 217-228 | MR | Zbl
[19] Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math., Volume 82 (1985), pp. 57-76 | DOI | EuDML | MR | Zbl
[20] Braid groups are linear, Annals of Math., Volume 155 (2002), pp. 131-156 | DOI | MR | Zbl
[21] Homological representations of the Hecke algebras, Commun. Math. Physics, Volume 135 (1990), pp. 141-191 | DOI | MR | Zbl
[22] On the injectivity of the braid group in the Hecke algebra, Bull. Austral. Math. Soc., Volume 64 (2001), pp. 487-493 | DOI | MR | Zbl
[23] The monodromy of the Brieskorn bundle, Geometric topology (Haifa, 1992), Contemp. Math., Volume 164, Amer. Math. Soc., Providence (1994), pp. 91-117 | MR | Zbl
[24] Communication personnelle, décembre 2006
[25] A note on the normal subgroups of mapping class groups, Proc. Cambridge Philos. Soc., Volume 99 (1986), pp. 79-87 | DOI | MR | Zbl
[26] On the representation theory of braid groups prépublication arXiv : math.RT/0502118 (v3) | Zbl
[27] Représentations linéaires des tresses infinitésimales, Université Paris XI-Orsay (2001) (Ph. D. Thesis)
[28] Quotients infinitésimaux du groupe de tresses, Ann. Inst. Fourier, Volume 53 (2003), pp. 1323-1364 | DOI | EuDML | Numdam | MR | Zbl
[29] Irréductibilité générique des produits tensoriels de monodromies, Bull. Soc. Math. France, Volume 132 (2004), pp. 201-232 | EuDML | Numdam | MR | Zbl
[30] Monodromie algébrique des groupes d’Artin diédraux, J. Algebra, Volume 303 (2006), pp. 97-132 | DOI | Zbl
[31] On the residual nilpotence of pure Artin groups, J. Group Theory, Volume 9 (2006), pp. 483-485 | DOI | MR | Zbl
[32] L’algèbre de Lie des transpositions, J. Algebra, Volume 310 (2007), pp. 742-774 | DOI | Zbl
[33] Casimir operators and monodromy representations of generalised braid groups, Transform. Groups, Volume 10 (2005), pp. 217-254 | DOI | MR | Zbl
[34] Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992 | MR | Zbl
[35] A note on the Lawrence-Krammer-Bigelow representation, Algebr. Geom. Topol., Volume 2 (2002), pp. 499-518 | DOI | EuDML | MR | Zbl
[36] Artin groups of spherical type up to isomorphisms, J. Algebra, Volume 281 (2004), pp. 666-678 | DOI | MR | Zbl
[37] The algebraic structure of group rings, Wiley, 1977 | MR | Zbl
[38] The Frattini subgroup and finite approximability, Soviet. Math. Dokl., Volume 7 (1966), pp. 1557-1560 | Zbl
[39] On Krammer’s representations of the braid group, Math. Ann., Volume 321 (2001), pp. 197-211 | DOI | Zbl
Cité par Sources :