On s’intéresse à des systèmes symétriques hyperboliques multidimensionnels en présence d’une semilinéarité. Il est bien connu que ces systèmes admettent des solutions discontinues, régulières de part et d’autre d’une hypersurface lisse caractéristique de multiplicité constante. Une telle solution étant donnée, on montre que est limite quand de solutions du système perturbé par une viscosité de taille . La preuve utilise un problème mixte parabolique et des développements de couches limites. On s’intéresse aussi à des singularités plus faibles comme des sauts de dérivées.
We are interested in some multidimensional semilinear symmetric hyperbolic systems. It is well known that these systems have some discontinuous solutions which are regular outside of a smooth hypersurface characteristic of constant multiplicity. We suppose that such a solution is given and we show that is the limit, when , of solutions of the system perturbated by a viscosity of size . The key tools of the proof are a parabolic boundary problem and boundary layers expansions. We also consider weaker singularities as derivatives jumps.
Mots clés : approche visqueuse, couches limites, solutions discontinues
@article{AIF_2006__56_1_183_0, author = {Sueur, Franck}, title = {Approche visqueuse de solutions discontinues de syst\`emes hyperboliques semilin\'eaires}, journal = {Annales de l'Institut Fourier}, pages = {183--245}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {1}, year = {2006}, doi = {10.5802/aif.2177}, zbl = {1094.35024}, mrnumber = {2228685}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2177/} }
TY - JOUR AU - Sueur, Franck TI - Approche visqueuse de solutions discontinues de systèmes hyperboliques semilinéaires JO - Annales de l'Institut Fourier PY - 2006 SP - 183 EP - 245 VL - 56 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2177/ DO - 10.5802/aif.2177 LA - fr ID - AIF_2006__56_1_183_0 ER -
%0 Journal Article %A Sueur, Franck %T Approche visqueuse de solutions discontinues de systèmes hyperboliques semilinéaires %J Annales de l'Institut Fourier %D 2006 %P 183-245 %V 56 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2177/ %R 10.5802/aif.2177 %G fr %F AIF_2006__56_1_183_0
Sueur, Franck. Approche visqueuse de solutions discontinues de systèmes hyperboliques semilinéaires. Annales de l'Institut Fourier, Tome 56 (2006) no. 1, pp. 183-245. doi : 10.5802/aif.2177. http://www.numdam.org/articles/10.5802/aif.2177/
[1] Perturbations singulières et prolongements maximaux d’opérateurs positifs, Arch. Rational Mech. Anal., Volume 53 (1973/74), pp. 69-100 | DOI | MR | Zbl
[2] Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels ; théorèmes d’approximation ; application à l’équation de transport, Ann. Sci. École Norm. Sup. (4), Volume 3 (1970), pp. 185-233 | Numdam | MR | Zbl
[3] Maximal positive boundary value problems as limits of singular perturbation problems, Trans. Amer. Math. Soc., Volume 270 (1982) no. 2, pp. 377-408 | DOI | MR | Zbl
[4] Couche limite dans un modèle de ferromagnétisme, Comm. Partial Differential Equations, Volume 27 (2002) no. 7-8, pp. 1467-1495 | DOI | MR | Zbl
[5] On the ferromagnetism equations in the non static case, Commun. Pure Appl. Anal., Volume 3 (2004) no. 3, pp. 367-393 | DOI | MR | Zbl
[6] Étude des conditions aux limites pour un système strictement hyperbolique, via l’approximation parabolique, J. Math. Pures Appl. (9), Volume 75 (1996) no. 5, pp. 485-508 | MR | Zbl
[7] Viscous limits for piecewise smooth solutions to systems of conservation laws, Arch. Rational Mech. Anal., Volume 121 (1992) no. 3, pp. 235-265 | DOI | MR | Zbl
[8] Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems, J. Differential Equations, Volume 143 (1998) no. 1, pp. 110-146 | DOI | MR | Zbl
[9] Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, Volume 15 (1990) no. 5, pp. 595-645 | DOI | MR | Zbl
[10] Perturbations visqueuses de problèmes mixtes hyperboliques et couches limites, Ann. Inst. Fourier (Grenoble), Volume 45 (1995) no. 4, pp. 973-1006 | DOI | Numdam | MR | Zbl
[11] Multidimensional viscous shocks. II. The small viscosity limit, Comm. Pure Appl. Math., Volume 57 (2004) no. 2, pp. 141-218 | DOI | MR | Zbl
[12] Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch. Ration. Mech. Anal., Volume 175 (2005) no. 2, pp. 151-244 | DOI | MR | Zbl
[13] Curved shocks as viscous limits : a boundary problem approach, Indiana Univ. Math. J., Volume 51 (2002) no. 2, pp. 421-450 | DOI | MR | Zbl
[14] Nonstationary flows of viscous and ideal fluids in , J. Functional Analysis, Volume 9 (1972), pp. 296-305 | DOI | MR | Zbl
[15] Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., Volume 34 (1981) no. 4, pp. 481-524 | DOI | MR | Zbl
[16] Initial-boundary value problems and the Navier-Stokes equations, Pure and Applied Mathematics, 136, Academic Press Inc., Boston, MA, 1989 | MR | Zbl
[17] The Cauchy problem for semilinear hyperbolic systems with discontinuous data, Duke Math. J., Volume 53 (1986) no. 4, pp. 983-1011 | MR | Zbl
[18] Problèmes de Cauchy et ondes non linéaires, Journées “Équations aux dérivées partielles” (Saint Jean de Monts, 1986), École Polytech., Palaiseau, 1986 (exposé no I, 29 pages) | Numdam | MR | Zbl
[19] Ondes soniques, J. Math. Pures Appl. (9), Volume 70 (1991) no. 2, pp. 197-268 | MR | Zbl
[20] Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., Volume 175 (2005) no. 826, pp. vi+107 | MR | Zbl
[21] Boundary value problems as limits of problems in all space, Séminaire Goulaouic-Schwartz (1978/1979), École Polytech., Palaiseau, 1979 (exposé no 3, 17 pages) | Numdam | MR | Zbl
[22] Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., Volume 291 (1985) no. 1, pp. 167-187 | DOI | MR | Zbl
[23] Inviscid boundary conditions and stability of viscous boundary layers, Asymptot. Anal., Volume 26 (2001) no. 3-4, pp. 285-306 | MR | Zbl
[24] Viscous approximation of strong shocks of systems of conservation laws, SIAM J. Math. Anal., Volume 35 (2003) no. 2, pp. 492-519 (electronic) | DOI | MR | Zbl
[25] Systèmes de lois de conservation. I, Fondations. [Foundations], Diderot Editeur, Paris, 1996 (Hyperbolicité, entropies, ondes de choc. [Hyperbolicity, entropies, shock waves]) | MR | Zbl
[26] Couches limites semilinéaires (à paraître aux Annales de la faculté des sciences de Toulouse) | Numdam
[27] Couches limites : un problème inverse (à paraître dans Communications in PDE)
Cité par Sources :