Nous considérons des systèmes dynamiques naturellement associés aux substitutions primitives et connus pour être uniquement ergodiques. Afin d'étudier plus précisément cette propriété, nous introduisons différentes notions de discrépance symbolique. Nous montrons comment les propriétés de répartition d'un tel système sont en partie déterminées par les matrices d'incidences associées à la substitution sous-jacente. Nous donnons également certaines applications de ces résultats à l'étude spectrale des systèmes dynamiques substitutifs.
We consider subshifts arising from primitive substitutions, which are known to be uniquely ergodic dynamical systems. In order to precise this point, we introduce a symbolic notion of discrepancy. We show how the distribution of such a subshift is in part ruled by the spectrum of the incidence matrices associated with the underlying substitution. We also give some applications of these results in connection with the spectral study of substitutive dynamical systems.
Keywords: Discrepancy, substitutions, subshifts, bounded remainder sets, self-similar dynamics
Mot clés : discrépance, substitutions, sous-shifts, ensembles à restes bornés, dynamiques auto-similaires
@article{AIF_2004__54_7_2201_0, author = {Adamczewski, Boris}, title = {Symbolic discrepancy and self-similar dynamics}, journal = {Annales de l'Institut Fourier}, pages = {2201--2234}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {7}, year = {2004}, doi = {10.5802/aif.2079}, mrnumber = {2139693}, zbl = {1066.11032}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2079/} }
TY - JOUR AU - Adamczewski, Boris TI - Symbolic discrepancy and self-similar dynamics JO - Annales de l'Institut Fourier PY - 2004 SP - 2201 EP - 2234 VL - 54 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2079/ DO - 10.5802/aif.2079 LA - en ID - AIF_2004__54_7_2201_0 ER -
%0 Journal Article %A Adamczewski, Boris %T Symbolic discrepancy and self-similar dynamics %J Annales de l'Institut Fourier %D 2004 %P 2201-2234 %V 54 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2079/ %R 10.5802/aif.2079 %G en %F AIF_2004__54_7_2201_0
Adamczewski, Boris. Symbolic discrepancy and self-similar dynamics. Annales de l'Institut Fourier, Tome 54 (2004) no. 7, pp. 2201-2234. doi : 10.5802/aif.2079. http://www.numdam.org/articles/10.5802/aif.2079/
[1] Codages de rotations et phénomènes d'autosimilarité, J. Théor. Nombres Bordeaux, Volume 14 (2002), pp. 351-386 | DOI | Numdam | MR | Zbl
[2] Répartitions des suites et substitutions, Acta Arith., Volume 112 (2004), pp. 1-22 | DOI | MR | Zbl
[3] An extension of Lagrange's theorem to interval exchange transformations over quadratic fields, J. Anal. Math., Volume 72 (1997), pp. 21-44 | DOI | MR | Zbl
[4] On sums of Rudin-Shapiro coefficients II, Pacific J. Math., Volume 107 (1983), pp. 39-69 | MR | Zbl
[5] A summation formula related to the binary digits, Invent. Math., Volume 73 (1983), pp. 107-115 | DOI | MR | Zbl
[6] On the distribution of digits in arithmetic sequences, Seminar on number theory, 1982-1983 (Talence, 1982/1983), Volume exp. no 32 (1983), pp. 1-12 | Zbl
[7] Sequences, discrepancies and applications, Springer-Verlag, Berlin, 1997 | MR | Zbl
[8] Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., Volume 65 (1989), pp. 153-169 | DOI | MR | Zbl
[9] Digital sum problems and substitutions on a finite alphabet, J. Number Theory, Volume 39 (1991), pp. 351-366 | DOI | MR | Zbl
[10] A characterization of substitutive sequences using return words, Discrete Math., Volume 179 (1998), pp. 89-101 | DOI | MR | Zbl
[11] Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems, Volume 20 (2000), pp. 1061-1078 | DOI | MR | Zbl
[12] Combinatorial and dynamical study of substitutions around the theorem of cobham, Dynamics and Randomness, Nonlinear Phenomena and Complex Systems (2002), pp. 53-94 | Zbl
[13] Prime flows in topological dynamics, Israel J. Math., Volume 14 (1973), pp. 26-38 | DOI | MR | Zbl
[14] Remarks on the remainder in Birkhoff's ergodic theorem, Acta Math. Acad. Sci. Hungar., Volume 28 (1976), pp. 389-395 | DOI | MR | Zbl
[15] Geometric realizations of substitutions, Bull. Soc. Math. France, Volume 126 (1998), pp. 149-179 | EuDML | Numdam | MR | Zbl
[16] On a conjecture of Erdős and Szüsz related to uniform distribution , Acta Arith., Volume 12 (1966/1967), pp. 193-212 | EuDML | MR | Zbl
[17] Uniform distribution of sequences, Pure and Applied Mathematics, Wiley-Interscience, New York, 1974 | MR | Zbl
[18] An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[19] Stricte ergodicité d'ensembles minimaux de substitution, C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 811-813 | MR | Zbl
[20] On a series of cosecants related to a problem in ergodic theory, Compos. Math., Volume 26 (1973), pp. 313-317 | EuDML | Numdam | MR | Zbl
[21] Substitution dynamical systems - Spectral analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987 | MR | Zbl
[22] Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982), pp. 147-178 | EuDML | Numdam | MR | Zbl
[23] Sequences defined by iterated morphisms, Sequences (Naples/Positano, 1988) (1990), pp. 275-286 | Zbl
[24] Représentation géométrique, combinatoire et arithmétique des systèmes substitutifs de type Pisot (2000) (Thèse de doctorat de l'Université de la Méditerranée)
[25] Gaps and steps for the sequence , Proc. Cambridge Philos. Soc., Volume 63 (1967), pp. 1115-1123 | DOI | MR | Zbl
[26] On the spectral theory of adic transformations, Representation theory and dynamical systems (1992), pp. 217-230 | Zbl
Cité par Sources :