@article{CM_1973__26_3_313_0, author = {Petersen, Karl}, title = {On a series of cosecants related to a problem in ergodic theory}, journal = {Compositio Mathematica}, pages = {313--317}, publisher = {Noordhoff International Publishing}, volume = {26}, number = {3}, year = {1973}, mrnumber = {325927}, zbl = {0269.10030}, language = {en}, url = {http://www.numdam.org/item/CM_1973__26_3_313_0/} }
TY - JOUR AU - Petersen, Karl TI - On a series of cosecants related to a problem in ergodic theory JO - Compositio Mathematica PY - 1973 SP - 313 EP - 317 VL - 26 IS - 3 PB - Noordhoff International Publishing UR - http://www.numdam.org/item/CM_1973__26_3_313_0/ LA - en ID - CM_1973__26_3_313_0 ER -
Petersen, Karl. On a series of cosecants related to a problem in ergodic theory. Compositio Mathematica, Tome 26 (1973) no. 3, pp. 313-317. http://www.numdam.org/item/CM_1973__26_3_313_0/
Über ein in der Theorie der säkulären Störungen vorkommendes Problem, Jour. f. d. reine und angew. Math. 135 (1909) 189-283. | JFM
[1]The mean ergodic theorem and saturation, Indiana Univ. Math. Jour. 20 (1970/71) 1163-1174. | MR | Zbl
and [2]Prime flows in topological dynamics, in preparation. | Zbl
, and [3]Topological Dynamics, A.M.S. Coll. Pubs. Vol. XXXVI, Providence, R. I., 1955. | MR | Zbl
and [4]Analytische Funktionen und die Verteilung von Zahlen mod. eins, Abh. Math. Semin. Hamburg Univ. 1 (1922) 54-76. | JFM
[5]On a series of cosecants, K. Akad. v. Wet. Amsterdam Proc. (Series A) 60 (1957) 265-267. | MR | Zbl
and [6]On a conjecture of Erdös and Szüsz related to uniform distribution mod 1, Acta Arith. 12 (1966) 193-212. | MR | Zbl
[7]Notiz zur Theorie der Diophantischen Approximationen und zur Theorie der linearen Diophantischen Approximationen, Jahresber. d. Deutschen Math. Ver. 36 (1927) 178-180 and 39 (1930) 34-46. | JFM
[8]Spectra of induced transformations, Recent Advances in Topological Dynamics, Springer-Verlag, New York, 1973, 226-230. | MR | Zbl
[9]Irregularities of distribution in dynamical systems, Recent Advances in Topological Dynamics, Springer-Verlag, New York, 1973, 249-252 | MR | Zbl
[10]