Nous améliorons un résultat de Chui et Parnes et nous démontrons que les séries de Taylor universelles forment un sous-espace
We strengthen a result of Chui and Parnes and we prove that the set of universal Taylor series is a
@article{AIF_1996__46_5_1293_0, author = {Nestoridis, Vassili}, title = {Universal {Taylor} series}, journal = {Annales de l'Institut Fourier}, pages = {1293--1306}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {46}, number = {5}, year = {1996}, doi = {10.5802/aif.1549}, mrnumber = {97k:30001}, zbl = {0865.30001}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1549/} }
TY - JOUR AU - Nestoridis, Vassili TI - Universal Taylor series JO - Annales de l'Institut Fourier PY - 1996 SP - 1293 EP - 1306 VL - 46 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1549/ DO - 10.5802/aif.1549 LA - en ID - AIF_1996__46_5_1293_0 ER -
Nestoridis, Vassili. Universal Taylor series. Annales de l'Institut Fourier, Tome 46 (1996) no. 5, pp. 1293-1306. doi : 10.5802/aif.1549. https://www.numdam.org/articles/10.5802/aif.1549/
[1] A Treatise on Trigonometric Series, Vol. I, II, Pergamon Press, 1964. | MR | Zbl
,[2] Approximation by overconvergence of power series, Journal of Mathematical Analysis and Applications, 36 (1971), 693-696. | MR | Zbl
, ,[3] Limit set of power series outside the circles of convergence, Pacific Journal of Mathematics, 50 (1974), 403-423. | MR | Zbl
, ,[4] The Taylor Series, Dover Pub. Inc., New York, 1957. | Zbl
,[5] Sur la structure circulaire des ensembles de points limites des sommes partielles d'une série de Taylor, Acta Sci. Math. (Szeged), 45, n° 1-4 (1983), 247-251. | MR | Zbl
,[6] On a theorem of Marcinkiewicz and Zygmund for Taylor series, Arkiv for Matematik, 27, n° 1 (1989) 105-126. | MR | Zbl
,[7] Partial sums of Taylor series on a circle, Ann. Inst. Fourier, 38-3 (1989), 715-736. | Numdam | MR | Zbl
, ,[8] Taylor series with limit points on a finite number of circles, Transactions of A.M.S., 337, n° 1 (1993), 437-450. | MR | Zbl
,[9] An application of Kronecker's Theorem to rational functions, Math. Ann., 298 (1994), 145-166. | MR | Zbl
, ,[10] An Introduction to Harmonic Analysis, John Wiley & Sons Inc., New York, London, Sydney, Toronto, 1968. | MR | Zbl
,[11] Sur certaines singularités des fonctions analytiques uniformes, Fundamental Mathematicae, 21 (1933), 267-294. | JFM | Zbl
, ,[12] On the behaviour of triginometric series and power series, Transactions of A.M.S., 50 (1941), 407-453. | JFM | MR | Zbl
, ,[13] Sur les séries Trigonométriques Universelles, Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, Vol. XLIX, n° 2 (1945), 79-82. | MR | Zbl
,[14] Limit points of partial sums of Taylor series, Matematika, 38 (1991), 239-249. | MR | Zbl
,[15] Distribution of partial sums of the Taylor development of rational functions, Transactions of A.M.S., 346, n° 1 (1994), 283-295. | MR | Zbl
,[16] The circular structure of the set of limit points of partial sums of Taylor series, Séminaire d'Analyse Harmonique, Université de Paris-Sud, Mathématiques, Orsay, France (1989-1990), 71-77. | MR | Zbl
, ,[17] Real and Complex Analysis, McGraw-Hill, New York, 1966. | MR | Zbl
,[18] Trigonometric Series, second edition reprinted, Vol. I, II, Cambridge University Press, 1979.
,Cité par Sources :