Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces
Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 187-200.

Une condition nécessaire et suffisante pour qu’une limite d’espaces de Stein soit un espace de Stein est prouvée. Cette condition donne une réciproque faible d’un théorème classique de Behnke-Stein.

A necessary and sufficient condition, which is a weak converse of a classical theorem of Behnke-Stein, in order that a limit of Stein spaces be again a Stein space is proved.

@article{AIF_1978__28_2_187_0,
     author = {Silva, Alessandro},
     title = {Rungescher {Satz} and a condition for {Steiness} for the limit of an increasing sequence of {Stein} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {187--200},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {28},
     number = {2},
     year = {1978},
     doi = {10.5802/aif.695},
     mrnumber = {58 #22656},
     zbl = {0365.32008},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.695/}
}
TY  - JOUR
AU  - Silva, Alessandro
TI  - Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces
JO  - Annales de l'Institut Fourier
PY  - 1978
SP  - 187
EP  - 200
VL  - 28
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.695/
DO  - 10.5802/aif.695
LA  - en
ID  - AIF_1978__28_2_187_0
ER  - 
%0 Journal Article
%A Silva, Alessandro
%T Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces
%J Annales de l'Institut Fourier
%D 1978
%P 187-200
%V 28
%N 2
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.695/
%R 10.5802/aif.695
%G en
%F AIF_1978__28_2_187_0
Silva, Alessandro. Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces. Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 187-200. doi : 10.5802/aif.695. http://www.numdam.org/articles/10.5802/aif.695/

[1] A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-260. | Numdam | MR | Zbl

[2] A. Andreotti et E. Vesentini, Les Théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, in Sem. Ehresmann, Paris, (1962). | Numdam

[3] H. Behnke und K. Stein, Konvergente Folgen von Regularitatsbereichen und die meromorphe Konvexitat, Math. Annalen, 116 (1939), 204-216. | JFM | Zbl

[4] A. Cassa, Coomologia separata sulle varieta analitiche complesse, Annali SNS Pisa, 25 (1971), 291-323. | Numdam

[5] J. E. Fornaess, An increasing sequence of Stein manifolds whose limit is not Stein, Math. Annalen, 223 (1976), 275-277. | MR | Zbl

[6] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. Journal, II, 9 (1957), 119-183. | MR | Zbl

[7] A. Hirschowitz, Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inventiones Math., 26 (1974), 303-322. | MR | Zbl

[8] Y. T. Siu, Non countable dimension of cohomology groups of analytic sheaves and domains of holomorphy, Math. Zeit., 102 (1967), 17-29. | MR | Zbl

[9] F. Treves, Locally convex spaces and linear partial differential equations, Springer, Berlin (1967). | MR | Zbl

[10] V. Villani, Un teorema di passaggio al limite per la coomologia degli spazi complessi, Rend. Sc. fis. mat. e nat. Accad. Lincei, 43 (1967), 168-170. | MR | Zbl

[11] J. Wermer, An example concerning polynomial convexity, Math. Annalen, 139 (1959), 147-150. | MR | Zbl

[12] A. Markoe, Runge families and inductive limits of Stein spaces, Ann. Inst. Fourier, 27 (1977), 117-128. | Numdam | MR | Zbl

[13] J.-P. Ramis, G. Ruget et J. L. Verdier, Dualité Relative en Géométrie Analytique Complexe, Inv. Math., 13 (1971), 261-283. | MR | Zbl

[14] A. Ogus, Local cohomological dimension, Ann. of Math., 98 (1973), 327-365. | MR | Zbl

Cité par Sources :