Une condition nécessaire et suffisante pour qu’une limite d’espaces de Stein soit un espace de Stein est prouvée. Cette condition donne une réciproque faible d’un théorème classique de Behnke-Stein.
A necessary and sufficient condition, which is a weak converse of a classical theorem of Behnke-Stein, in order that a limit of Stein spaces be again a Stein space is proved.
@article{AIF_1978__28_2_187_0, author = {Silva, Alessandro}, title = {Rungescher {Satz} and a condition for {Steiness} for the limit of an increasing sequence of {Stein} spaces}, journal = {Annales de l'Institut Fourier}, pages = {187--200}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {28}, number = {2}, year = {1978}, doi = {10.5802/aif.695}, mrnumber = {58 #22656}, zbl = {0365.32008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.695/} }
TY - JOUR AU - Silva, Alessandro TI - Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces JO - Annales de l'Institut Fourier PY - 1978 SP - 187 EP - 200 VL - 28 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.695/ DO - 10.5802/aif.695 LA - en ID - AIF_1978__28_2_187_0 ER -
%0 Journal Article %A Silva, Alessandro %T Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces %J Annales de l'Institut Fourier %D 1978 %P 187-200 %V 28 %N 2 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.695/ %R 10.5802/aif.695 %G en %F AIF_1978__28_2_187_0
Silva, Alessandro. Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces. Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 187-200. doi : 10.5802/aif.695. http://www.numdam.org/articles/10.5802/aif.695/
[1] Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-260. | Numdam | MR | Zbl
et ,[2] Les Théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, in Sem. Ehresmann, Paris, (1962). | Numdam
et ,[3] Konvergente Folgen von Regularitatsbereichen und die meromorphe Konvexitat, Math. Annalen, 116 (1939), 204-216. | JFM | Zbl
und ,[4] Coomologia separata sulle varieta analitiche complesse, Annali SNS Pisa, 25 (1971), 291-323. | Numdam
,[5] An increasing sequence of Stein manifolds whose limit is not Stein, Math. Annalen, 223 (1976), 275-277. | MR | Zbl
,[6] Sur quelques points d'algèbre homologique, Tôhoku Math. Journal, II, 9 (1957), 119-183. | MR | Zbl
,[7] Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inventiones Math., 26 (1974), 303-322. | MR | Zbl
,[8] Non countable dimension of cohomology groups of analytic sheaves and domains of holomorphy, Math. Zeit., 102 (1967), 17-29. | MR | Zbl
,[9] Locally convex spaces and linear partial differential equations, Springer, Berlin (1967). | MR | Zbl
,[10] Un teorema di passaggio al limite per la coomologia degli spazi complessi, Rend. Sc. fis. mat. e nat. Accad. Lincei, 43 (1967), 168-170. | MR | Zbl
,[11] An example concerning polynomial convexity, Math. Annalen, 139 (1959), 147-150. | MR | Zbl
,[12] Runge families and inductive limits of Stein spaces, Ann. Inst. Fourier, 27 (1977), 117-128. | Numdam | MR | Zbl
,[13] Dualité Relative en Géométrie Analytique Complexe, Inv. Math., 13 (1971), 261-283. | MR | Zbl
, et ,[14] Local cohomological dimension, Ann. of Math., 98 (1973), 327-365. | MR | Zbl
,Cité par Sources :