Le problème général des réunions de Stein est résolu : étant donné une suite croissante des ouverts de Stein, on démontre que la réunion est de Stein si et seulement si est séparé.
The general Stein union problem is solved: given an increasing sequence of Stein open sets, it is shown that the union is Stein if and only if is Hausdorff separated.
@article{AIF_1977__27_3_117_0, author = {Markoe, Andrew}, title = {Runge families and inductive limits of {Stein} spaces}, journal = {Annales de l'Institut Fourier}, pages = {117--127}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, number = {3}, year = {1977}, doi = {10.5802/aif.663}, mrnumber = {58 #28665}, zbl = {0323.32014}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.663/} }
TY - JOUR AU - Markoe, Andrew TI - Runge families and inductive limits of Stein spaces JO - Annales de l'Institut Fourier PY - 1977 SP - 117 EP - 127 VL - 27 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.663/ DO - 10.5802/aif.663 LA - en ID - AIF_1977__27_3_117_0 ER -
Markoe, Andrew. Runge families and inductive limits of Stein spaces. Annales de l'Institut Fourier, Tome 27 (1977) no. 3, pp. 117-127. doi : 10.5802/aif.663. http://www.numdam.org/articles/10.5802/aif.663/
[1] Carleman estimates for the Laplace-Beltrami equation on complex manifolds Publ. Math., No. 25, IHES, Paris (1965). | EuDML | Numdam | Zbl
and ,[2] Theorie der Funktionen mehrerer komplexer Veränderlichen, Zweite erweiterte Auflage, Springer-Verlag, Berlin 1970. | Zbl
and ,[3] An increasing sequence of Stein manifolds whose limit is not Stein, to appear. | Zbl
,[4] Charakterisierung der holomorph-vollständigen Raüme, Math. Ann., 129, (1955), 233-259. | EuDML | Zbl
,[5] éléments de géométrie algébrique, III (première Partie), Publ. Math. No. 11, IHES, Paris, 1961. | Numdam
,[6] Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, N.J., 1965. | MR | Zbl
and ,[7] On Serre duality and envelopes of holomorphy, Trans. AMS, 128 (1967), 414-446. | MR | Zbl
,[8] Complexe dualisant et théorèmes de dualité en géométrie analytique complexe, Publ. Math., No. 38, IHES, Paris, 1971. | EuDML | Numdam | Zbl
and ,[9] Dualité relative en géométrie analytique complexe, Inv. Math., (1971). | EuDML | MR | Zbl
, and ,[10] Rungescherssatz and a condition for Steiness for the limit of an increasing sequence of Stein spaces.
,[11] Überlagerungen holomorph-vollständiger komplexer Raüme, Arch. Math., 7 (1956), 354-361. | MR | Zbl
,[12] An example concerning polynomial convexity, Math. Ann., 139 (1959), 147-150. | MR | Zbl
,[13] Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inv. Math., 26 (1974), 303-322. | MR | Zbl
,[14] Konvergente Folgen von Reguläritätsbereichen und die meromorphe Konvexität, Math. Ann., 116 (1939), 204-216. | JFM | Zbl
and ,[15] Runge families and increasing unions of Stein spaces, research announcement, Bull. AMS, 82, No 5, (1976). | MR | Zbl
,Cité par Sources :