Étude de quelques propriétés des produits de Riesz
Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 127-169.

On étudie les mesures définies sur T=R/2πZ par les produits j0(1+Re(ajeiλjx)), (|aj|1, λj entier, λj+1/λj3). Étant données deux telles mesures on donne des conditions assurant soit qu’elles sont étrangères, soit que l’une est absolument continue par rapport à l’autre. On donne une minoration de la dimension de Hausdorff des boréliens qui portent une telle mesure. On montre que certaines séries convergent presque partout par rapport à ces mesures. On en déduit, par exemple, que les ensembles

x[0,2π];limn+n-aj=1neiλjx=z,(12<α<1,zC)

ont 1 pour dimension de Hausdorff. On étend certains de ces résultats au cas de plusieurs variables.

This paper deals with measures defined on T=R/2πZ by products of the form j0(1+Re(ajeiλjx)), (|aj|1, λjN, λj+1/λj3). Some conditions are given insuring either that two such measures are mutually singular or that one of them is absolutely continuous with respect to the other. The Hausdorff dimension of borelian sets supporting such a measure is estimated. Some questions of convergence almost everywhere with respect to these measures are discussed. It is proved, for instance, that the Hausdorff dimension of the set

x[0,2π];limn+n-aj=1neiλjx=z,12<α<1,zC

equals one. Some extensions of these results in the case of several variables are given.

@article{AIF_1975__25_2_127_0,
     author = {Peyri\`ere, Jacques},
     title = {\'Etude de quelques propri\'et\'es des produits de {Riesz}},
     journal = {Annales de l'Institut Fourier},
     pages = {127--169},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {25},
     number = {2},
     year = {1975},
     doi = {10.5802/aif.557},
     mrnumber = {53 #8771},
     zbl = {0302.43003},
     language = {fr},
     url = {https://www.numdam.org/articles/10.5802/aif.557/}
}
TY  - JOUR
AU  - Peyrière, Jacques
TI  - Étude de quelques propriétés des produits de Riesz
JO  - Annales de l'Institut Fourier
PY  - 1975
SP  - 127
EP  - 169
VL  - 25
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.557/
DO  - 10.5802/aif.557
LA  - fr
ID  - AIF_1975__25_2_127_0
ER  - 
%0 Journal Article
%A Peyrière, Jacques
%T Étude de quelques propriétés des produits de Riesz
%J Annales de l'Institut Fourier
%D 1975
%P 127-169
%V 25
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.557/
%R 10.5802/aif.557
%G fr
%F AIF_1975__25_2_127_0
Peyrière, Jacques. Étude de quelques propriétés des produits de Riesz. Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 127-169. doi : 10.5802/aif.557. https://www.numdam.org/articles/10.5802/aif.557/

[1] P. Billingsley, Ergodic theory and information, Wiley (1965). | MR | Zbl

[2] G. Brown, W. Moran, On orthogonality of Riesz product. (à paraître). | Zbl

[3] E. Hewitt and H.S. Zuckerman, Singular measures with absolutely continuous squares, Proc. Camb. Phil. Soc., 62 (1966), 399-420. Corringendum ibid. 63 (1967), 367-368. | Zbl

[4] M. Kac, R. Salem, A. Zygmund, A gap theorem, Trans. Amer. Math. Soc., 63 (1948), 235-243. | MR | Zbl

[5] J.-P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris (1963). | MR | Zbl

[6] Y. Meyer et B. Weiss, Les produits de Riesz sont des schémas de Bernoulli, Journées ergodiques, Rennes (1973).

[7] J. Neveu, Calcul des probabilités, Masson (1964). | Zbl

[8] O. Pade, Sur le spectre d'une classe de produits de Riesz, C.R. Acad. Sc. Paris, 276 (1973), 1453-1455. | MR | Zbl

[9] J. Peyriere, Sur les produits de Riesz, C.R. Acad. Sc. Paris, 276 (1973), 1417-1419. | MR | Zbl

[10] R. Salem and A. Zygmund, On lacunary trigonometric series I, Proc. Nat. Acad., Sc., 33 (1947), 333-338. | MR | Zbl

[11] A. Zygmund, Trigonometric series. I and II, Cambridge (1959). | Zbl

  • FAN, AI HUA; SCHMIDT, KLAUS; VERBITSKIY, EVGENY Bohr chaoticity of principal algebraic actions and Riesz product measures, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 10, p. 2933 | DOI:10.1017/etds.2024.13
  • Doubtsov, Evgueni Mutual singularity of Riesz products on the unit sphere, Proceedings of the American Mathematical Society, Volume 153 (2024) no. 1, p. 269 | DOI:10.1090/proc/17036
  • Cuny, Christophe; Fan, Ai Hua Study of almost everywhere convergence of series by mean of martingale methods, Stochastic Processes and their Applications, Volume 127 (2017) no. 8, p. 2725 | DOI:10.1016/j.spa.2016.12.006
  • EL ABDALAOUI, E. H.; NADKARNI, M. G. A non-singular transformation whose spectrum has Lebesgue component of multiplicity one, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 3, p. 671 | DOI:10.1017/etds.2014.85
  • El Abdalaoui, E. H. Generalized Riesz Products on the Bohr Compactification of R R, Journal of Fourier Analysis and Applications, Volume 22 (2016) no. 1, p. 20 | DOI:10.1007/s00041-015-9410-5
  • PARREAU, FRANÇOIS; ROY, EMMANUEL Prime Poisson suspensions, Ergodic Theory and Dynamical Systems, Volume 35 (2015) no. 7, p. 2216 | DOI:10.1017/etds.2014.32
  • Fan, Ai-Hua Some Aspects of Multifractal Analysis, Geometry and Analysis of Fractals, Volume 88 (2014), p. 115 | DOI:10.1007/978-3-662-43920-3_5
  • Wu, Huai-Bing; Zhang, Xiong-Ying Some remarks onp-adic Riesz products, Journal of Mathematical Analysis and Applications, Volume 403 (2013) no. 1, p. 5 | DOI:10.1016/j.jmaa.2013.01.051
  • Dragomir, Sever S.; Koumandos, Stamatis Some inequalities for f-divergence measures generated by 2n-convex functions, Acta Scientiarum Mathematicarum, Volume 76 (2010) no. 1-2, p. 71 | DOI:10.1007/bf03549821
  • Fan, Aihua; Zhang, Xiongying Some Properties of Riesz Products on the Ring of p-Adic Integers, Journal of Fourier Analysis and Applications, Volume 15 (2009) no. 4, p. 521 | DOI:10.1007/s00041-009-9059-z
  • Zhang, Xiong-Ying Riesz products on the ring of dyadic integers, Journal of Mathematical Analysis and Applications, Volume 357 (2009) no. 1, p. 103 | DOI:10.1016/j.jmaa.2009.03.067
  • Qiu, Hua; Su, Weiyi; Li, Yin On Hausdorff dimension of certain Riesz product in local fields, Analysis in Theory and Applications, Volume 23 (2007) no. 2, p. 147 | DOI:10.1007/s10496-007-0147-0
  • Fan, Aihua; Zhang, Xiong Ying Riesz products on the ring of p-adic integers, Comptes Rendus. Mathématique, Volume 344 (2007) no. 7, p. 425 | DOI:10.1016/j.crma.2007.02.016
  • Katok, Anatole; Thouvenot, Jean-Paul Spectral Properties and Combinatorial Constructions in Ergodic Theory, Volume 1 (2006), p. 649 | DOI:10.1016/s1874-575x(06)80036-6
  • Zlatoš, Andrej Sparse potentials with fractional Hausdorff dimension, Journal of Functional Analysis, Volume 207 (2004) no. 1, p. 216 | DOI:10.1016/s0022-1236(03)00180-0
  • Havin, V. P. On the Uncertainty Principle in Harmonic Analysis, Twentieth Century Harmonic Analysis — A Celebration (2001), p. 3 | DOI:10.1007/978-94-010-0662-0_1
  • Doubtsov, Evgueni Little Bloch Functions, Symmetric Pluriharmonic Measures, and Zygmund's Dichotomy, Journal of Functional Analysis, Volume 170 (2000) no. 2, p. 286 | DOI:10.1006/jfan.1999.3510
  • Houcein, El; Abdalaoui, El La singularité mutuelle presque sûre du spectre des transformations d’Ornstein, Israel Journal of Mathematics, Volume 112 (1999) no. 1, p. 135 | DOI:10.1007/bf02773480
  • Fan, Ai Hua; Pollicott, Mark Generalized equilibrium states and behavior of averaging operators, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 327 (1998) no. 6, p. 547 | DOI:10.1016/s0764-4442(98)89161-1
  • Nadkarni, M. G. Riesz Products As Spectral Measures, Spectral Theory of Dynamical Systems (1998), p. 119 | DOI:10.1007/978-3-0348-8841-7_15
  • Nadkarni, M. G. Riesz Products As Spectral Measures, Spectral Theory of Dynamical Systems (1998), p. 137 | DOI:10.1007/978-93-80250-93-9_15
  • Klemes, Ivo; Reinhold, Karin Rank one transformations with singular spectral type, Israel Journal of Mathematics, Volume 98 (1997) no. 1, p. 1 | DOI:10.1007/bf02937326
  • Hua, Fan Ai Multifractal analysis of infinite products, Journal of Statistical Physics, Volume 86 (1997) no. 5-6, p. 1313 | DOI:10.1007/bf02183625
  • Gähler, F.; Klitzing, R. The Diffraction Pattern of Self-Similar Tilings, The Mathematics of Long-Range Aperiodic Order (1997), p. 141 | DOI:10.1007/978-94-015-8784-6_7
  • Queffelec, Martine Spectral study of automatic and substitutive sequences, Beyond Quasicrystals (1995), p. 369 | DOI:10.1007/978-3-662-03130-8_12
  • Bisbas, A.; Karanikas, C. Dimension and entropy of a non-ergodic Markovian process and its relation to Rademacher Riesz Products, Monatshefte f�r Mathematik, Volume 118 (1994) no. 1-2, p. 21 | DOI:10.1007/bf01305771
  • Fan, Ai Hua Une Formule Approximative de Dimension pour Certains Produits de Riesz, Monatshefte f�r Mathematik, Volume 118 (1994) no. 1-2, p. 83 | DOI:10.1007/bf01305776
  • Koumandos, Stamatis Lp-convergence of a certain class of product martingales, Proceedings of the Edinburgh Mathematical Society, Volume 37 (1994) no. 2, p. 243 | DOI:10.1017/s0013091500006052
  • Koumandos, Stamatis A class of equivalent measures, Probabilistic and Stochastic Methods in Analysis, with Applications (1992), p. 605 | DOI:10.1007/978-94-011-2791-2_29
  • Bisbas, A.; Karanikas, C. On the entropy of certain stochastic measures, Probabilistic and Stochastic Methods in Analysis, with Applications (1992), p. 663 | DOI:10.1007/978-94-011-2791-2_33
  • Kislyakov, S. V. Classical Themes of Fourier Analysis, Commutative Harmonic Analysis I, Volume 15 (1991), p. 113 | DOI:10.1007/978-3-662-02732-5_2
  • Kahane, Jean-Pierre From Riesz Products to Random Sets, ICM-90 Satellite Conference Proceedings (1991), p. 125 | DOI:10.1007/978-4-431-68168-7_11
  • PeyriÈre, J. Almost everywhere convergence of lacunary trigonometric series with respect to Riesz products, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, Volume 48 (1990) no. 3, p. 376 | DOI:10.1017/s144678870002992x
  • Bisbas, A.; Karanikas, C. On the Hausdorff dimension of rademacher Riesz products, Monatshefte für Mathematik, Volume 110 (1990) no. 1, p. 15 | DOI:10.1007/bf01571273
  • Karanikas, C.; Koumandos, S. On A Generalized Entropy’s Formula, Results in Mathematics, Volume 18 (1990) no. 3-4, p. 254 | DOI:10.1007/bf03323169
  • Brown, Gavin; Moran, William; Pearce, Charles E. M. Riesz products, Hausdorff dimension and normal numbers, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 101 (1987) no. 3, p. 529 | DOI:10.1017/s0305004100066895
  • Ritter, G. On dichotomy of Riesz products, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 85 (1979) no. 1, p. 79 | DOI:10.1017/s0305004100055523
  • Ritter, G. On Kakutani's dichotomy theorem for infinite products of not necessarily independent functions, Mathematische Annalen, Volume 239 (1979) no. 1, p. 35 | DOI:10.1007/bf01420492
  • Lepingle, Dominique; M�min, Jean Sur l'int�grabilit� uniforme des martingales exponentielles, Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 42 (1978) no. 3, p. 175 | DOI:10.1007/bf00641409

Cité par 39 documents. Sources : Crossref