Par voie d’une description de la topologie des espaces ( ouvert convexe dans ) via la transformation de Fourier, c’est-à-dire leurs structures analytiques uniformes, on arrive à une formule qui décrit l’enveloppe convexe du support singulier d’une distribution , . On donne des applications à une classe des distributions qui satisfont à l’égalité
pour toutes .
Using a description of the topology of the spaces ( open convex subset of ) via the Fourier transform, namely their analytically uniform structures, we arrive at a formula describing the convex hull of the singular support of a distribution , . We give applications to a class of distributions satisfying
for all .
@article{AIF_1973__23_1_55_0, author = {Berenstein, C. A. and Dostal, M. A.}, title = {Some remarks on convolution equations}, journal = {Annales de l'Institut Fourier}, pages = {55--73}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {23}, number = {1}, year = {1973}, doi = {10.5802/aif.444}, mrnumber = {49 #5822}, zbl = {0241.46039}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.444/} }
TY - JOUR AU - Berenstein, C. A. AU - Dostal, M. A. TI - Some remarks on convolution equations JO - Annales de l'Institut Fourier PY - 1973 SP - 55 EP - 73 VL - 23 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.444/ DO - 10.5802/aif.444 LA - en ID - AIF_1973__23_1_55_0 ER -
Berenstein, C. A.; Dostal, M. A. Some remarks on convolution equations. Annales de l'Institut Fourier, Tome 23 (1973) no. 1, pp. 55-73. doi : 10.5802/aif.444. http://www.numdam.org/articles/10.5802/aif.444/
[1] “Die innere Geometrie der konvexen Flächen”, Berlin, 1955. | Zbl
,[2] “Geometric methods of solutions of elliptic equations” (in Russian), Moscow, 1964.
,[3] Topological properties of the analytically uniform spaces, Trans. Amer. Math. Soc., 154 (1971), 493-513. | MR | Zbl
and ,[4] Fourier transforms of the Beurling classes Dw, E'w', Bull. Amer. Math. Soc., 77 (1971), 963-967. | MR | Zbl
and ,[5] “Analytically uniform spaces and their applications to convolution equations”, Lecture Notes in Math., vol. 256, Springer-Verlag, 1972. | MR | Zbl
and ,[6] “Espaces vectoriels topologiques”, Eléments de mathématique, Livre V, Hermann et Cie, Paris, 1953, 1955.
,[7] On Fourier image of the singular support of a distribution, Czech. Math. J., 16 (1966), 231-237. | MR | Zbl
,[8] An analogue of a theorem of Vladimir Bernstein and its applications to singular supports of distributions, Proc. London Math. Soc., 19 (1969), p. 553-576. | MR | Zbl
,[9] A complex characterization of the Schwartz space D (), Math. Ann., 195 (1972), p. 175-191. | MR | Zbl
,[10] Solutions of some problems of division I, Amer. J. Math. 76 (1954), 883-893. | MR | Zbl
,[11] Solutions of some problems of division II, Amer. J. Math., 77 (1955), 286-292. | MR | Zbl
,[12] On the range of convolution operators, Ann. Math., 76 (1962), 148-170. | MR | Zbl
,[13] Supports and singular supports of convolutions, Acta Math., 110 (1965), 279-302. | MR | Zbl
,[14] Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, 6 (1955-1956), 271-355. | Numdam | MR | Zbl
,[15] Sur la propagation de la régularité des solutions des équations à coefficients constants, Bull. Math. Soc. Sci. Math. Phys. R.P. Roumaine, 3 (1959), 432-440. | Zbl
,[16] Uber die singulären Randpunkte eines konvexen Körpers, Math. Ann., 83 (1921), 116-118. | JFM
,[17] “Function theory in polydisks”, W.A. Benjamin, Inc., New York, 1969. | Zbl
,[18] “Théorie des distributions”, I, II, Hermann et Cie, Paris, 1950, 1953. | Zbl
,Cité par Sources :