Nous étudions le groupe des automorphismes modérés de l’espace affine de dimension 3, sur un corps de caractéristique nulle. Nous retrouvons, de manière unifiée, des résultats de Kuroda, Shestakov, Umirbaev et Wright, concernant la théorie des réductions et les relations dans . La nouveauté dans notre approche réside dans la mise en avant d’un complexe simplicial de dimension 2 simplement connexe sur lequel agit par isométries.
We study the group of tame automorphisms of the 3-dimensional affine space, over a field of characteristic zero. We recover, in a unified way, previous results of Kuroda, Shestakov, Umirbaev and Wright, about the theory of reduction and the relations in . The novelty in our presentation is the emphasis on a simply connected 2-dimensional simplicial complex on which acts by isometries.
Accepté le :
Publié le :
DOI : 10.5802/afst.1597
@article{AFST_2019_6_28_1_145_0, author = {Lamy, St\'ephane}, title = {Combinatorics of the tame automorphism group}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {145--207}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {1}, year = {2019}, doi = {10.5802/afst.1597}, mrnumber = {3940796}, zbl = {1436.14103}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1597/} }
TY - JOUR AU - Lamy, Stéphane TI - Combinatorics of the tame automorphism group JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 SP - 145 EP - 207 VL - 28 IS - 1 PB - Université Paul Sabatier, Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1597/ DO - 10.5802/afst.1597 LA - en ID - AFST_2019_6_28_1_145_0 ER -
%0 Journal Article %A Lamy, Stéphane %T Combinatorics of the tame automorphism group %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2019 %P 145-207 %V 28 %N 1 %I Université Paul Sabatier, Toulouse %U http://www.numdam.org/articles/10.5802/afst.1597/ %R 10.5802/afst.1597 %G en %F AFST_2019_6_28_1_145_0
Lamy, Stéphane. Combinatorics of the tame automorphism group. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 1, pp. 145-207. doi : 10.5802/afst.1597. http://www.numdam.org/articles/10.5802/afst.1597/
[1] The tame automorphism group of an affine quadric threefold acting on a square complex, Journal de l’École Polytechnique - Mathématiques, Volume 1 (2014), pp. 161-223 | DOI | Numdam | MR | Zbl
[2] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | MR | Zbl
[3] Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | DOI | MR | Zbl
[4] Methods of algebraic geometry. Vol. I, Cambridge Mathematical Library, Cambridge University Press, 1994 (Book I: Algebraic preliminaries, Book II: Projective space, Reprint of the 1947 original) | Zbl
[5] A generalization of the Shestakov-Umirbaev inequality, J. Math. Soc. Japan, Volume 60 (2008) no. 2, pp. 495-510 | DOI | MR | Zbl
[6] Automorphisms of a polynomial ring which admit reductions of type I, Publ. Res. Inst. Math. Sci., Volume 45 (2009) no. 3, pp. 907-917 | DOI | MR | Zbl
[7] Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism, Tôhoku Math. J., Volume 62 (2010) no. 1, pp. 75-115 | DOI | MR | Zbl
[8] Une preuve géométrique du théorème de Jung, Enseign. Math. (2), Volume 48 (2002) no. 3-4, pp. 291-315 | MR | Zbl
[9] Acylindrical hyperbolicity of the three-dimensional tame automorphism group (2016) (https://arxiv.org/abs/1610.05457) | Zbl
[10] Non simplicité du groupe de Cremona sur tout corps, Ann. Inst. Fourier, Volume 66 (2016) no. 5, pp. 2021-2046 | DOI | Numdam | MR | Zbl
[11] On the acylindrical hyperbolicity of the tame automorphism group of , Bull. Lond. Math. Soc., Volume 49 (2017) no. 5, pp. 881-894 | DOI | MR
[12] Poisson brackets and two-generated subalgebras of rings of polynomials, J. Am. Math. Soc., Volume 17 (2004) no. 1, pp. 181-196 | DOI | MR | Zbl
[13] The tame and the wild automorphisms of polynomial rings in three variables, J. Am. Math. Soc., Volume 17 (2004) no. 1, pp. 197-227 | DOI | MR | Zbl
[14] Defining relations of the tame automorphism group of polynomial algebras in three variables, J. Reine Angew. Math., Volume 600 (2006), pp. 203-235 | MR | Zbl
[15] A parachute for the degree of a polynomial in algebraically independent ones, Math. Ann., Volume 349 (2011) no. 3, pp. 589-597 | DOI | MR | Zbl
[16] The generalized amalgamated product structure of the tame automorphism group in dimension three, Transform. Groups, Volume 20 (2015) no. 1, pp. 291-304 | DOI | MR | Zbl
Cité par Sources :