Nous étudions le groupe
We study the group
Keywords: Automorphism group, affine quadric, cube complex, Tits alternative
Mot clés : Groupe d’automorphismes, quadrique affine, complexe cubique, alternative de Tits
@article{JEP_2014__1__161_0, author = {Bisi, Cinzia and Furter, Jean-Philippe and Lamy, St\'ephane}, title = {The tame automorphism group of an affine quadric threefold acting on a square complex}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {161--223}, publisher = {Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.8}, language = {en}, url = {https://www.numdam.org/articles/10.5802/jep.8/} }
TY - JOUR AU - Bisi, Cinzia AU - Furter, Jean-Philippe AU - Lamy, Stéphane TI - The tame automorphism group of an affine quadric threefold acting on a square complex JO - Journal de l’École polytechnique - Mathématiques PY - 2014 SP - 161 EP - 223 VL - 1 PB - Ecole polytechnique UR - https://www.numdam.org/articles/10.5802/jep.8/ DO - 10.5802/jep.8 LA - en ID - JEP_2014__1__161_0 ER -
%0 Journal Article %A Bisi, Cinzia %A Furter, Jean-Philippe %A Lamy, Stéphane %T The tame automorphism group of an affine quadric threefold acting on a square complex %J Journal de l’École polytechnique - Mathématiques %D 2014 %P 161-223 %V 1 %I Ecole polytechnique %U https://www.numdam.org/articles/10.5802/jep.8/ %R 10.5802/jep.8 %G en %F JEP_2014__1__161_0
Bisi, Cinzia; Furter, Jean-Philippe; Lamy, Stéphane. The tame automorphism group of an affine quadric threefold acting on a square complex. Journal de l’École polytechnique - Mathématiques, Tome 1 (2014), pp. 161-223. doi : 10.5802/jep.8. https://www.numdam.org/articles/10.5802/jep.8/
[AFK + 13] Flexible varieties and automorphism groups, Duke Math. J., Volume 162 (2013) no. 4, pp. 767-823 | MR
[Ale95] A note on Nagata’s automorphism, Automorphisms of affine spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, pp. 215-221 | MR | Zbl
[AOS12] Geodesics in
[BH99] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999 | MR | Zbl
[BŚ99] On groups acting on nonpositively curved cubical complexes, Enseign. Math. (2), Volume 45 (1999) no. 1-2, pp. 51-81 | MR | Zbl
[Can11] Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2), Volume 174 (2011) no. 1, pp. 299-340 | MR | Zbl
[CL13] Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | MR | Zbl
[Din12] Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnamatica, Volume 37 (2012) no. 4, pp. 513-529 | MR | Zbl
[dlH83] Free groups in linear groups, Enseign. Math. (2), Volume 29 (1983) no. 1-2, pp. 129-144 | MR | Zbl
[Fru73] A filtration in the three-dimensional Cremona group, Mat. Sb. (N.S.), Volume 90(132) (1973), p. 196-213, 325 | MR | Zbl
[Fur83] Finite groups of polynomial automorphisms in
[GD77] Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 1, pp. 54-103 | MR | Zbl
[Kam79] Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra, Volume 60 (1979) no. 2, pp. 439-451 | MR | Zbl
[Kur10] Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism, Tohoku Math. J. (2), Volume 62 (2010) no. 1, pp. 75-115 | MR | Zbl
[Lam01] L’alternative de Tits pour
[Lam13] On the genus of birational maps between 3-folds (2013) (arXiv:1305.2482)
[LV13] The tame and the wild automorphisms of an affine quadric threefold., J. Math. Soc. Japan, Volume 65 (2013) no. 1, pp. 299-320 | MR
[Pan99] Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.), Volume 30 (1999) no. 1, pp. 95-98 | MR | Zbl
[Pap95] Strongly geodesically automatic groups are hyperbolic, Invent. Math., Volume 121 (1995) no. 2, pp. 323-334 | MR | Zbl
[PV91] Sous-groupes libres dans les groupes d’automorphismes d’arbres, Enseign. Math. (2), Volume 37 (1991) no. 1-2, pp. 151-174 | MR | Zbl
[Ser77a] Arbres, amalgames,
[Ser77b] Cours d’arithmétique, Presses Universitaires de France, Paris, 1977 | MR | Zbl
[Wis12] From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, 117, American Mathematical Society, Providence, RI, 2012 | MR | Zbl
[Wri13] The Amalgamated Product Structure of the Tame Automorphism Group in Dimension Three (2013) (arXiv:1310.8325)
[Wri92] Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc., Volume 331 (1992) no. 1, pp. 281-300 | MR | Zbl
Cité par Sources :