Nous étudions le groupe des automorphismes modérés d’une quadrique affine lisse de dimension , que l’on peut choisir comme étant la variété sous-jacente à . Nous construisons un complexe carré sur lequel ce groupe agit naturellement de façon cocompacte, et nous montrons que ce complexe est et hyperbolique. Nous proposons ensuite deux applications de cette construction : nous montrons que tout sous-groupe fini de est linéarisable, et que satisfait l’alternative de Tits.
We study the group of tame automorphisms of a smooth affine -dimensional quadric, which we can view as the underlying variety of . We construct a square complex on which the group admits a natural cocompact action, and we prove that the complex is and hyperbolic. We propose two applications of this construction: We show that any finite subgroup in is linearizable, and that satisfies the Tits alternative.
Keywords: Automorphism group, affine quadric, cube complex, Tits alternative
Mot clés : Groupe d’automorphismes, quadrique affine, complexe cubique, alternative de Tits
@article{JEP_2014__1__161_0, author = {Bisi, Cinzia and Furter, Jean-Philippe and Lamy, St\'ephane}, title = {The tame automorphism group of an affine quadric threefold acting on a square complex}, journal = {Journal de l{\textquoteright}\'Ecole polytechnique - Math\'ematiques}, pages = {161--223}, publisher = {Ecole polytechnique}, volume = {1}, year = {2014}, doi = {10.5802/jep.8}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jep.8/} }
TY - JOUR AU - Bisi, Cinzia AU - Furter, Jean-Philippe AU - Lamy, Stéphane TI - The tame automorphism group of an affine quadric threefold acting on a square complex JO - Journal de l’École polytechnique - Mathématiques PY - 2014 SP - 161 EP - 223 VL - 1 PB - Ecole polytechnique UR - http://www.numdam.org/articles/10.5802/jep.8/ DO - 10.5802/jep.8 LA - en ID - JEP_2014__1__161_0 ER -
%0 Journal Article %A Bisi, Cinzia %A Furter, Jean-Philippe %A Lamy, Stéphane %T The tame automorphism group of an affine quadric threefold acting on a square complex %J Journal de l’École polytechnique - Mathématiques %D 2014 %P 161-223 %V 1 %I Ecole polytechnique %U http://www.numdam.org/articles/10.5802/jep.8/ %R 10.5802/jep.8 %G en %F JEP_2014__1__161_0
Bisi, Cinzia; Furter, Jean-Philippe; Lamy, Stéphane. The tame automorphism group of an affine quadric threefold acting on a square complex. Journal de l’École polytechnique - Mathématiques, Tome 1 (2014), pp. 161-223. doi : 10.5802/jep.8. http://www.numdam.org/articles/10.5802/jep.8/
[AFK + 13] Flexible varieties and automorphism groups, Duke Math. J., Volume 162 (2013) no. 4, pp. 767-823 | MR
[Ale95] A note on Nagata’s automorphism, Automorphisms of affine spaces (Curaçao, 1994), Kluwer Acad. Publ., Dordrecht, 1995, pp. 215-221 | MR | Zbl
[AOS12] Geodesics in cubical complexes, Adv. in Appl. Math., Volume 48 (2012) no. 1, pp. 142-163 | MR | Zbl
[BH99] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999 | MR | Zbl
[BŚ99] On groups acting on nonpositively curved cubical complexes, Enseign. Math. (2), Volume 45 (1999) no. 1-2, pp. 51-81 | MR | Zbl
[Can11] Sur les groupes de transformations birationnelles des surfaces, Ann. of Math. (2), Volume 174 (2011) no. 1, pp. 299-340 | MR | Zbl
[CL13] Normal subgroups in the Cremona group, Acta Math., Volume 210 (2013) no. 1, pp. 31-94 (With an appendix by Yves de Cornulier) | MR | Zbl
[Din12] Tits alternative for automorphism groups of compact Kähler manifolds, Acta Math. Vietnamatica, Volume 37 (2012) no. 4, pp. 513-529 | MR | Zbl
[dlH83] Free groups in linear groups, Enseign. Math. (2), Volume 29 (1983) no. 1-2, pp. 129-144 | MR | Zbl
[Fru73] A filtration in the three-dimensional Cremona group, Mat. Sb. (N.S.), Volume 90(132) (1973), p. 196-213, 325 | MR | Zbl
[Fur83] Finite groups of polynomial automorphisms in , Tohoku Math. J. (2), Volume 35 (1983) no. 3, pp. 415-424 | MR | Zbl
[GD77] Automorphisms of affine surfaces. II, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 1, pp. 54-103 | MR | Zbl
[Kam79] Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra, Volume 60 (1979) no. 2, pp. 439-451 | MR | Zbl
[Kur10] Shestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism, Tohoku Math. J. (2), Volume 62 (2010) no. 1, pp. 75-115 | MR | Zbl
[Lam01] L’alternative de Tits pour , J. Algebra, Volume 239 (2001) no. 2, pp. 413-437 | MR | Zbl
[Lam13] On the genus of birational maps between 3-folds (2013) (arXiv:1305.2482)
[LV13] The tame and the wild automorphisms of an affine quadric threefold., J. Math. Soc. Japan, Volume 65 (2013) no. 1, pp. 299-320 | MR
[Pan99] Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.), Volume 30 (1999) no. 1, pp. 95-98 | MR | Zbl
[Pap95] Strongly geodesically automatic groups are hyperbolic, Invent. Math., Volume 121 (1995) no. 2, pp. 323-334 | MR | Zbl
[PV91] Sous-groupes libres dans les groupes d’automorphismes d’arbres, Enseign. Math. (2), Volume 37 (1991) no. 1-2, pp. 151-174 | MR | Zbl
[Ser77a] Arbres, amalgames, , Astérisque, 46, Société Mathématique de France, Paris, 1977, pp. 189 p. | Numdam | MR | Zbl
[Ser77b] Cours d’arithmétique, Presses Universitaires de France, Paris, 1977 | MR | Zbl
[Wis12] From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geometry, CBMS Regional Conference Series in Mathematics, 117, American Mathematical Society, Providence, RI, 2012 | MR | Zbl
[Wri13] The Amalgamated Product Structure of the Tame Automorphism Group in Dimension Three (2013) (arXiv:1310.8325)
[Wri92] Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc., Volume 331 (1992) no. 1, pp. 281-300 | MR | Zbl
Cité par Sources :