Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 10 (1989) no. 1, pp. 37-64.
@article{AFST_1989_5_10_1_37_0,
     author = {Brillard, Alain},
     title = {Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {37--64},
     publisher = {Universit\'e Paul Sabatier},
     address = {Toulouse},
     volume = {Ser. 5, 10},
     number = {1},
     year = {1989},
     mrnumber = {1425743},
     zbl = {0636.76097},
     language = {en},
     url = {http://www.numdam.org/item/AFST_1989_5_10_1_37_0/}
}
TY  - JOUR
AU  - Brillard, Alain
TI  - Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 1989
SP  - 37
EP  - 64
VL  - 10
IS  - 1
PB  - Université Paul Sabatier
PP  - Toulouse
UR  - http://www.numdam.org/item/AFST_1989_5_10_1_37_0/
LA  - en
ID  - AFST_1989_5_10_1_37_0
ER  - 
%0 Journal Article
%A Brillard, Alain
%T Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 1989
%P 37-64
%V 10
%N 1
%I Université Paul Sabatier
%C Toulouse
%U http://www.numdam.org/item/AFST_1989_5_10_1_37_0/
%G en
%F AFST_1989_5_10_1_37_0
Brillard, Alain. Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 10 (1989) no. 1, pp. 37-64. http://www.numdam.org/item/AFST_1989_5_10_1_37_0/

[1] Attouch (H.). - Variational convergence for functions and operators. Applicable Maths Series. Pitman (London) 1984. | MR | Zbl

[2] Bensoussan (A.), Lions (J.L.), Papanicolaou (G.).- Asymptotic analysis for periodic structures. North Holland (Amsterdam) 1978. | MR | Zbl

[3] Brezis (H.). - Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (Amsterdam) 1973. | MR | Zbl

[4] Brillard (A.).- Asymptotic behaviour of the solution of Mossolov and Miasnikov's problem in an open set with holes. Publications Univ. Haute Alsace n°42 1986.

[5] Brillard (A.). - Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods. Ann. Fac. Sci. Toulouse t. 8 Fasc. 2 p. 225-252 1987 and Publication Avamac Perpignan85-11 1985. | Numdam | MR | Zbl

[6] De Giorgi (E.). - Convergence problems for functionals and operators. Proc. Int. Meeting on Recent methods in nonlinear analysis. Rome 1978. De Giorgi, Magenes, Mosco, Eds. Pitagora Ed. (Bologna) 1979. | MR | Zbl

[7] Duvaut (G.), Lions (J.L.).-Les inéquations en mécanique et physique, Dunod (Paris) 1972. | MR | Zbl

[8] Ekeland (I.), Temam (R.).-Analyse convexe et problèmes variationnels. Dunod (Paris) 1978. | Zbl

[9] Levy (T.).-Loi de Darcy ou loi de Brinkman? CRAS Série II t. 292 1981 p. 871-874. | MR | Zbl

[10] Lions (J.L.), Sanchez-Palencia (E.). - Ecoulement d'un fluide viscoplastique de Bingham dans un milieu poreux. J. Maths. pures et appli. 60 1981 p. 341-360. | MR | Zbl

[11] Marchenko (A.V.), Hruslov (E.Y.). - Boundary value problems in domains with close-grained boundaries. Naukova Dumka (Kiev) 1974 (in russian). | MR

[12] Sanchez-Palencia (E.). - Non-homogeneous media and vibration theory. Lecture Notes in Physics n°127. Springer Verlag (Berlin) 1980. | MR | Zbl

[13] Tartar (L.).-Incompressible fluid flow in a porous medium. Convergence of the homogenization process. Appendix in [12].

[14] Temam (R.). - Navier-Stokes equations. North Holland (Amsterdam) 1977. see also Deny-Lions Les espaces de type Beppo-Levy. Ann. Inst. Fourier. t. 5, 1954, p. 305-370, Necas J. Equations aux dérivées partielles. Presses de l'Université de Montreal. 1965.

[15] Temam (R.). - Problèmes mathématiques en plasticité. Gauthier-Villars (Paris) 1983. | MR | Zbl