@article{AFST_1989_5_10_1_37_0, author = {Brillard, Alain}, title = {Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {37--64}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 10}, number = {1}, year = {1989}, mrnumber = {1425743}, zbl = {0636.76097}, language = {en}, url = {http://www.numdam.org/item/AFST_1989_5_10_1_37_0/} }
TY - JOUR AU - Brillard, Alain TI - Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1989 SP - 37 EP - 64 VL - 10 IS - 1 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1989_5_10_1_37_0/ LA - en ID - AFST_1989_5_10_1_37_0 ER -
%0 Journal Article %A Brillard, Alain %T Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1989 %P 37-64 %V 10 %N 1 %I Université Paul Sabatier %C Toulouse %U http://www.numdam.org/item/AFST_1989_5_10_1_37_0/ %G en %F AFST_1989_5_10_1_37_0
Brillard, Alain. Asymptotic behaviour of a viscoplastic bingham fluid in porous media with periodic structure. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 10 (1989) no. 1, pp. 37-64. http://www.numdam.org/item/AFST_1989_5_10_1_37_0/
[1] Variational convergence for functions and operators. Applicable Maths Series. Pitman (London) 1984. | MR | Zbl
). -[2] Asymptotic analysis for periodic structures. North Holland (Amsterdam) 1978. | MR | Zbl
), ), ).-[3] Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (Amsterdam) 1973. | MR | Zbl
). -[4] Asymptotic behaviour of the solution of Mossolov and Miasnikov's problem in an open set with holes. Publications Univ. Haute Alsace n°42 1986.
).-[5] Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods. Ann. Fac. Sci. Toulouse t. 8 Fasc. 2 p. 225-252 1987 and Publication Avamac Perpignan n°85-11 1985. | Numdam | MR | Zbl
). -[6] Convergence problems for functionals and operators. Proc. Int. Meeting on Recent methods in nonlinear analysis. Rome 1978. De Giorgi, Magenes, Mosco, Eds. Pitagora Ed. (Bologna) 1979. | MR | Zbl
). -[7] Les inéquations en mécanique et physique, Dunod (Paris) 1972. | MR | Zbl
), ).-[8] Analyse convexe et problèmes variationnels. Dunod (Paris) 1978. | Zbl
), ).-[9] Loi de Darcy ou loi de Brinkman? CRAS Série II t. 292 1981 p. 871-874. | MR | Zbl
).-[10] Ecoulement d'un fluide viscoplastique de Bingham dans un milieu poreux. J. Maths. pures et appli. 60 1981 p. 341-360. | MR | Zbl
), ). -[11] Boundary value problems in domains with close-grained boundaries. Naukova Dumka (Kiev) 1974 (in russian). | MR
), ). -[12] Non-homogeneous media and vibration theory. Lecture Notes in Physics n°127. Springer Verlag (Berlin) 1980. | MR | Zbl
). -[13] Incompressible fluid flow in a porous medium. Convergence of the homogenization process. Appendix in [12].
).-[14] Navier-Stokes equations. North Holland (Amsterdam) 1977. see also Les espaces de type Beppo-Levy. Ann. Inst. Fourier. t. 5, 1954, p. 305-370, Equations aux dérivées partielles. Presses de l'Université de Montreal. 1965.
). -[15] Problèmes mathématiques en plasticité. Gauthier-Villars (Paris) 1983. | MR | Zbl
). -