@article{AFST_1986-1987_5_8_2_225_0, author = {Brillard, Alain}, title = {Asymptotic analysis of incompressible and viscous fluid flow through porous media. {Brinkman's} law via epi-convergence methods}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {225--252}, publisher = {Universit\'e Paul Sabatier}, address = {Toulouse}, volume = {Ser. 5, 8}, number = {2}, year = {1986-1987}, mrnumber = {928845}, zbl = {0628.76093}, language = {en}, url = {http://www.numdam.org/item/AFST_1986-1987_5_8_2_225_0/} }
TY - JOUR AU - Brillard, Alain TI - Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 1986-1987 SP - 225 EP - 252 VL - 8 IS - 2 PB - Université Paul Sabatier PP - Toulouse UR - http://www.numdam.org/item/AFST_1986-1987_5_8_2_225_0/ LA - en ID - AFST_1986-1987_5_8_2_225_0 ER -
%0 Journal Article %A Brillard, Alain %T Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 1986-1987 %P 225-252 %V 8 %N 2 %I Université Paul Sabatier %C Toulouse %U http://www.numdam.org/item/AFST_1986-1987_5_8_2_225_0/ %G en %F AFST_1986-1987_5_8_2_225_0
Brillard, Alain. Asymptotic analysis of incompressible and viscous fluid flow through porous media. Brinkman's law via epi-convergence methods. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 5, Tome 8 (1986-1987) no. 2, pp. 225-252. http://www.numdam.org/item/AFST_1986-1987_5_8_2_225_0/
[1] Sobolev Spaces. - Academic Press, 1975. | MR | Zbl
).-[2] Variational convergence for functions and operators. Applicable Mathematics series. - Pitman (London), 1984. | MR | Zbl
).-[3] Variational inequalities with varying obstacles; the general form of the limit problem, J.Functional Analysis, t. 50 (3), 1983, p. 329-386. | MR
), and ). -[4] Ecoulement d'un fluide incompressible dans un milieu poreux. - Publication Avamac (Perpignan), 1985.
). -[5] Un terme étrange venu d'ailleurs, Collège de France Seminar. Research Notes in Maths, t. 60, 70 Pitman (London), 1982. | MR | Zbl
), and ).-[6] Convergence problems for functionals and operators. Proc. Int. Congress on "Recent Methods in Nonlinear Analysis" Rome 1978 De Giorgi, Magenes, Mosco Eds. Pitagora Editrice (Bologna) 1979. | MR | Zbl
).-[7] The mathematical theory of viscous incompressible flow.- Gordon and Breach (New York), 1963. | MR | Zbl
). -[8] Loi de Darcy ou loi de Brinkman?, C.R.A.S. série II, t. 292, 1981, p. 871-874. | MR | Zbl
). -[9] Fluid flow through an array of fixed particles, Int. J. Engin. Sci., t. 21 n°1, 1983, p. 11-23. | MR | Zbl
). -[10] Problèmes aux limites dans des domaines aux frontières finement granulées. - in russian. Naukova Dumka (Kiev), 1974.
, .-[11] Oral communication-1985.
).-[12] Non-homogeneous media and vibration theory.- Lectures Notes in Physics n°127. Springer-Verlag (Berlin), 1980. | MR | Zbl
).-[13] Incompressible fluid flow in a porous medium. Convergence of the homogenization process. - Appendix in the preceding reference [12].
).-[14] Navier-Stokes equations.- North Holland (Amsterdam), 1977. Brinkman's law may be found in the original paper. | Zbl
). -A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appli. Sci. Res., t. A1, 1947, p. 27-34. | Zbl
).-