We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, is in , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general compactness criterion.
Mots clés : conservation law, degenerate convection-diffusion equation, entropy solution, finite difference scheme, convergence, error estimate
@article{M2AN_2001__35_2_239_0, author = {Karlsen, Kenneth Hvistendahl and Risebro, Nils Henrik}, title = {Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {239--269}, publisher = {EDP-Sciences}, volume = {35}, number = {2}, year = {2001}, mrnumber = {1825698}, zbl = {1032.76048}, language = {en}, url = {http://www.numdam.org/item/M2AN_2001__35_2_239_0/} }
TY - JOUR AU - Karlsen, Kenneth Hvistendahl AU - Risebro, Nils Henrik TI - Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 239 EP - 269 VL - 35 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/item/M2AN_2001__35_2_239_0/ LA - en ID - M2AN_2001__35_2_239_0 ER -
%0 Journal Article %A Karlsen, Kenneth Hvistendahl %A Risebro, Nils Henrik %T Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 239-269 %V 35 %N 2 %I EDP-Sciences %U http://www.numdam.org/item/M2AN_2001__35_2_239_0/ %G en %F M2AN_2001__35_2_239_0
Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik. Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 2, pp. 239-269. http://www.numdam.org/item/M2AN_2001__35_2_239_0/
[1] Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in two-phase flow in porous media. Preprint (1999). | MR | Zbl
and ,[2] Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49 (2000) 723-749. | Zbl
, and ,[3] On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes. J. Math. Anal. Appl. 247 (2000) 517-556. | Zbl
, and ,[4] Sedimentation and thickening: Phenomenological foundation and mathematical theory. Kluwer Academic Publishers, Dordrecht (1999). | MR | Zbl
, , and ,[5] Entropy solutions for nonlinear degenerate problems. Arch. Rational Mech. Anal. 147 (1999) 269-361. | Zbl
,[6] Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. RAIRO-Modél. Math. Anal. Numér. 33 (1999) 129-156. | Numdam | Zbl
,[7] Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh. Numer. Math. 66 (1993) 139-157. | EuDML | Zbl
, and ,[8] An error estimate for finite volume methods for multidimensional conservation laws. Math. Comp. 63 (1994) 77-103. | Zbl
, and ,[9] Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal. 32 (1995) 687-705. | Zbl
, and ,[10] A priori error estimates for numerical methods for scalar conservation laws. I. The general approach. Math. Comp. 65 (1996) 533-573. | Zbl
and ,[11] The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463 (electronic). | Zbl
and ,[12] Monotone difference approximations for scalar conservation laws. Math. Comp. 34 (1980) 1-21. | Zbl
and ,[13] Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. 78 (1980) 385-390. | Zbl
and ,[14] One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36 (1981) 321-351. | Zbl
and ,[15] Numerical solution of reservoir flow models based on large time step operator splitting algorithms, in Filtration in Porous media and industrial applications. Lect. Notes Math. 1734, Springer, Berlin (2000) 9-77. | Zbl
and ,[16] Discrete approximations of solutions to doubly nonlinear degenerate parabolic equations. Numer. Math. 86 (2000) 377-417. | Zbl
and ,[17] Degenerate convection-diffusion equations and implicit monotone difference schemes, in Hyperbolic problems: Theory, numerics, applications, Vol. I (Zürich, 1998). Birkhäuser, Basel (1999) 285-294. | Zbl
and ,[18] Viscous splitting approximation of mixed hyperbolic-parabolic convection-diffusion equations. Numer. Math. 83 (1999) 107-137. | Zbl
and ,[19] Monotone difference approximations of solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (2000) 1838-1860 (electronic). | Zbl
and ,[20] Second order difference schemes for degenerate convection-diffusion equations. Preprint (in preparation).
and ,[21] Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | Zbl
, , and ,[22] Finite volumes and nonlinear diffusion equations. RAIRO-Modél. Math. Anal. Numér. 32 (1998) 747-761. | Numdam | Zbl
, , and ,[23] Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992) 635-648. | Zbl
and ,[24] On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. XXIX (1976) 297-322. | Zbl
, and ,[25] Operator splitting methods for degenerate convection-diffusion equations I: Convergence and entropy estimates, in Stochastic processes, physics and geometry: New interplays. A volume in honor of Sergio Albeverio. Amer. Math. Soc. (to appear). | MR | Zbl
, and ,[26] Operator splitting for nonlinear partial differential equations: An convergence theory. Preprint (in preparation).
, , and ,[27] Convergence of the Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625-640. | Zbl
and ,[28] On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Preprint, Department of Mathematics, University of Bergen (2000). | MR | Zbl
and ,[29] Stability of a resonant system of conservation laws modeling polymer flow with gravitation. J. Differential Equations March (2000). | MR | Zbl
and ,[30] Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Comm. Partial Differential Equations 20 (1995) 1959-1990. | Zbl
and ,[31] Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numer. Math. 71 (1995) 527-560. | Zbl
, and ,[32] Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994) 324-343. | Zbl
and ,[33] Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof. Mat. Zametki 6 (1969) 97-108. | Zbl
,[34] First order quasi-linear equations in several independent variables. Math. USSR Sbornik 10 (1970) 217-243.
,[35] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. | Zbl
and ,[36] Accuracy of some approximative methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. Dokl. 16 (1976) 105-119. | Zbl
,[37] Error bounds for the methods of Glimm, Godunov and LeVeque. SIAM J. Numer. Anal. 22 (1985) 1074-1081. | Zbl
,[38] Convergence of higher order finite volume schemes on irregular grids. Adv. Comput. Math. 3 (1995) 197-218. | Zbl
,[39] A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. Preprint, Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg (2000).
,[40] Discontinuous solutions of non-linear differential equations. Amer. Math. Soc Transl. Ser. 2 26 (1963) 95-172. | Zbl
,[41] On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988) 19-51. | Zbl
and ,[42] Solution forte entropique de lois scalaires hyperboliques-paraboliques dégénérées. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 599-602. | Zbl
and ,[43] Blow-up in quasilinear parabolic equations. Walter de Gruyter & Co., Berlin (1995). Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. | MR | Zbl
, , and ,[44] On convergence of monotone finite difference schemes with variable spatial differencing. Math. Comp. 40 (1983) 91-106. | Zbl
,[45] Global solution of the Cauchy problem for a class of nonstrictly hyperbolic conservation laws. Adv. in Appl. Math. 3 (1982) 335-375. | Zbl
,[46] Convergence of a difference scheme for conservation laws with a discontinuous flux. Preprint, Available at the URL http://www.math.ntnu.no/conservation/ | MR | Zbl
,[47] A difference scheme for conservation laws with a discontinuous flux - the nonconvex case. Preprint, Available at the URL http://www.math.ntnu.no/conservation/ | MR | Zbl
,[48] Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes. RAIRO-Modél. Math. Anal. Numér. 28 (1994) 267-295. | Numdam | Zbl
,[49] The spaces BV and quasi-linear equations. Math. USSR Sbornik 2 (1967) 225-267. | Zbl
,[50] Cauchy's problem for degenerate second order quasilinear parabolic equations. Math. USSR Sbornik 7 (1969) 365-387. | Zbl
and ,