Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate
ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 129-156.
@article{M2AN_1999__33_1_129_0,
     author = {Chainais-Hillairet, Claire},
     title = {Finite volume schemes for a nonlinear hyperbolic equation. {Convergence} towards the entropy solution and error estimate},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {129--156},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {1},
     year = {1999},
     mrnumber = {1685749},
     zbl = {0921.65071},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_1_129_0/}
}
TY  - JOUR
AU  - Chainais-Hillairet, Claire
TI  - Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1999
SP  - 129
EP  - 156
VL  - 33
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/M2AN_1999__33_1_129_0/
LA  - en
ID  - M2AN_1999__33_1_129_0
ER  - 
%0 Journal Article
%A Chainais-Hillairet, Claire
%T Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1999
%P 129-156
%V 33
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/M2AN_1999__33_1_129_0/
%G en
%F M2AN_1999__33_1_129_0
Chainais-Hillairet, Claire. Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 129-156. http://www.numdam.org/item/M2AN_1999__33_1_129_0/

[1] B. Cockburn, F. Coquel and P. Lefloch, An error estimate for finite volume methods for multidimensional convervation laws. Math. Comp. 63 (1994) 77-103. | MR | Zbl

[2] R. Eymard, T. Gallouët, M. Ghilani and R. Herbin , Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by some finite volume schemes. IMA. J. Numer. Anal. 18 (1998) 563-594. | MR | Zbl

[3] R. Eymard, T. Gallouët and R. Herbin, Convergence of a finite volume seheme for a nonlinear hyperbolic equation, Proceedings of the Third colloquium on numerical analysis, edited by D. Bainov and V. Covachev. Elsevier (1995) 61-70. | MR | Zbl

[4] R. Eymard, T. Gallouët and R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperboiic equation. Chin. Ann. Math. B16 (1995) 1-14. | MR | Zbl

[5] S. N. Kruskov, First order quasilinear equations with several space variable. Math. USSR. Sb. 10 (1970) 217-243. | Zbl

[6] R. Di Perna, Measure-valued solutions to conservation laws. Arch. Rat. Mech Anal. 88 (1985) 223-270. | MR | Zbl

[7] R. J. Le Veque, Numerical methods for conservations laws. Birkhaeuser (1990). | MR | Zbl

[8] J.P. Vila, Convergence and error estimate in finite volume schemes for gênerai multidimensional conservation laws. RAIRO Model. Math. Anal. Num. 28 (1994) 267-285. | Numdam | MR | Zbl