@article{AIHPC_2006__23_5_663_0, author = {Lopes, A. O. and Thieullen, Ph.}, title = {Mather measures and the {Bowen-Series} transformation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {663--682}, publisher = {Elsevier}, volume = {23}, number = {5}, year = {2006}, doi = {10.1016/j.anihpc.2004.12.005}, zbl = {05072656}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2004.12.005/} }
TY - JOUR AU - Lopes, A. O. AU - Thieullen, Ph. TI - Mather measures and the Bowen-Series transformation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2006 SP - 663 EP - 682 VL - 23 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2004.12.005/ DO - 10.1016/j.anihpc.2004.12.005 LA - en ID - AIHPC_2006__23_5_663_0 ER -
%0 Journal Article %A Lopes, A. O. %A Thieullen, Ph. %T Mather measures and the Bowen-Series transformation %J Annales de l'I.H.P. Analyse non linéaire %D 2006 %P 663-682 %V 23 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2004.12.005/ %R 10.1016/j.anihpc.2004.12.005 %G en %F AIHPC_2006__23_5_663_0
Lopes, A. O.; Thieullen, Ph. Mather measures and the Bowen-Series transformation. Annales de l'I.H.P. Analyse non linéaire, Tome 23 (2006) no. 5, pp. 663-682. doi : 10.1016/j.anihpc.2004.12.005. http://www.numdam.org/articles/10.1016/j.anihpc.2004.12.005/
[1] Geodesic flows, interval maps and symbolic dynamics, Bull. Amer. Math. Soc. 25 (1991) 229-334. | MR | Zbl
, ,[2] Counting geodesics which are optimal in homology, Ergodic Theory Dynam. Systems 23 (2) (2003) 353-388. | MR | Zbl
,[3] Mather sets for twist maps and geodesics on tori, Dynam. Report. I (1988) 1-56. | MR | Zbl
,[4] Minimal geodesics, Ergodic Theory Dynam. Systems 10 (1989) 263-286. | MR | Zbl
,[5] Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford Univ. Press, Oxford, 1991. | MR | Zbl
, , ,[6] Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces, Cambridge Univ. Press, Cambridge, 2000. | MR | Zbl
, ,[7] Markov maps associated to Fuchsian groups, Publ. Math. IHES 50 (1979) 153-170. | EuDML | Numdam | MR | Zbl
, ,[8] On minimizing measures of the action of autonomous Lagrangians, Nonlinearity 8 (6) (1995) 1077-1085. | MR | Zbl
,[9] G. Contreras, R. Iturriaga, Global minimizers for autonomous Lagrangians, in: 22 Coloq. Bras. Mat. 1999, IMPA, Rio de Janeiro, Brasil. | MR | Zbl
[10] Lagrangian flows: the dynamics of globally minimizing orbits, Bol. Soc. Brassil. Mat. 28 (2) (1997) 155-196. | MR | Zbl
, , ,[11] Lyapunov Minimizing Measures for expanding maps of the circle, Ergodic Theory Dynam. Systems 21 (2001) 1379-1409. | MR | Zbl
, , ,[12] R. Exel, A. Lopes, -Algebras, approximately proper equivalence relations, and thermodynamic formalism, Ergodic Theory Dynam. Systems (2003), in press. | MR | Zbl
[13] Riemann Surfaces, Springer-Verlag, 1980. | MR | Zbl
, ,[14] Solutions KAM faibles conjuguees et barrieres de Peierls, C. R. Acad. Sci. Paris, Ser. I 235 (1997) 649-652. | MR | Zbl
,[15] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, Lyons, 2000.
[16] Automorphic Functions, Chelsea, 1972. | JFM
,[17] Fuchsian Groups, Univ. of Chicago Press, 1992. | MR | Zbl
,[18] Subactions for Anosov diffeomorphisms, geometric methods in dynamics, in: Astérisque, Soc. Math. France, 2003, pp. 135-146. | Numdam | MR | Zbl
, ,[19] Subactions for Anosov Flows, Ergodic Theory Dynam. Systems 25 (2) (2005) 605-628. | MR | Zbl
, ,[20] Generic properties and problems of minimizing measures of Lagrangian systems, Nonlinearity 9 (2) (1996) 273-310. | MR | Zbl
,[21] D. Massart, Normes stables de surfaces, Thèse E.N.S. Lyon, 1996. | MR
[22] Stable norms of surfaces: local structure of the unit ball of rational directions, Geom. Funct. Anal. 7 (6) (1997) 996-1010. | MR | Zbl
,[23] Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z. 207 (2) (1991) 169-207. | MR | Zbl
,[24] Geodesic Flows, Birkhäuser, 1999. | MR | Zbl
,[25] Geometrical Markov coding on surface of constant negative curvature, Ergodic Theory Dynam. Systems 6 (1986) 601-625. | MR | Zbl
,Cité par Sources :