@incollection{AST_2003__287__135_0, author = {Lopes, Artur O. and Thieullen, Philippe}, title = {Sub-actions for {Anosov} diffeomorphisms}, booktitle = {Geometric methods in dynamics (II) : Volume in honor of Jacob Palis}, editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe}, series = {Ast\'erisque}, pages = {135--146}, publisher = {Soci\'et\'e math\'ematique de France}, number = {287}, year = {2003}, mrnumber = {2040005}, zbl = {1045.37010}, language = {en}, url = {http://www.numdam.org/item/AST_2003__287__135_0/} }
TY - CHAP AU - Lopes, Artur O. AU - Thieullen, Philippe TI - Sub-actions for Anosov diffeomorphisms BT - Geometric methods in dynamics (II) : Volume in honor of Jacob Palis AU - Collectif ED - de Melo, Wellington ED - Viana, Marcelo ED - Yoccoz, Jean-Christophe T3 - Astérisque PY - 2003 SP - 135 EP - 146 IS - 287 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2003__287__135_0/ LA - en ID - AST_2003__287__135_0 ER -
%0 Book Section %A Lopes, Artur O. %A Thieullen, Philippe %T Sub-actions for Anosov diffeomorphisms %B Geometric methods in dynamics (II) : Volume in honor of Jacob Palis %A Collectif %E de Melo, Wellington %E Viana, Marcelo %E Yoccoz, Jean-Christophe %S Astérisque %D 2003 %P 135-146 %N 287 %I Société mathématique de France %U http://www.numdam.org/item/AST_2003__287__135_0/ %G en %F AST_2003__287__135_0
Lopes, Artur O.; Thieullen, Philippe. Sub-actions for Anosov diffeomorphisms, dans Geometric methods in dynamics (II) : Volume in honor of Jacob Palis, Astérisque, no. 287 (2003), pp. 135-146. http://www.numdam.org/item/AST_2003__287__135_0/
[1] Recurrence of cocycles and random walks, J. London Math. Soc., (2), 13 (1976) 486-488. | MR | Zbl
,[2] Le Poisson n'a pas d'arêtes, Ann. Inst. Henri Poincaré, 36 (2000), 489-508. | EuDML | Numdam | MR | Zbl
.[3] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, vol. 470. Springer Verlag, Berlin, Heidelberg, New York, (1975). | MR | Zbl
.[4] Lyapunov minimizing measures for expanding of the circle, Ergod. Th. & and Dynam. Sys, 21, (2001), 1379-1409. | MR | Zbl
, , .[5] Some homology properties of -systems. Mathematical Notes of the USSR Academy of Sciences, 10 (1971), 758-763. | Zbl
.[6] Cohomological inequalities for finite topological Markov chains. Funct. Anal, and its Appl., 33(3), 236-238 (1999) | MR | Zbl
.