@article{AIHPC_1990__7_5_427_0, author = {Tanaka, Kazunaga}, title = {Homoclinic orbits for a singular second order hamiltonian system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {427--438}, publisher = {Gauthier-Villars}, volume = {7}, number = {5}, year = {1990}, mrnumber = {1138531}, zbl = {0712.58026}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1990__7_5_427_0/} }
TY - JOUR AU - Tanaka, Kazunaga TI - Homoclinic orbits for a singular second order hamiltonian system JO - Annales de l'I.H.P. Analyse non linéaire PY - 1990 SP - 427 EP - 438 VL - 7 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1990__7_5_427_0/ LA - en ID - AIHPC_1990__7_5_427_0 ER -
Tanaka, Kazunaga. Homoclinic orbits for a singular second order hamiltonian system. Annales de l'I.H.P. Analyse non linéaire, Tome 7 (1990) no. 5, pp. 427-438. http://www.numdam.org/item/AIHPC_1990__7_5_427_0/
[1] Critical points with lack of compactness and applications to singular dynamical system, Ann Mat. Pura Appl., Vol. 149, 1987, pp. 237-259. | MR | Zbl
and ,[2] Periodic solutions of singular dynamical systems, Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 1-10. | MR | Zbl
and ,[3] Noncollision orbits for a class of Keplerian-like potentials, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 5, 1988, pp. 287-295. | Numdam | MR | Zbl
and ,[4] A minimax methods for a class of Hamiltonian systems with singular potentials, J. Funct. Anal., Vol. 82, 1989, pp. 412-428. | MR | Zbl
and ,[5] Periodic solutions of dynamical systems with Newtonian type potentials, Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 111- 115. | MR | Zbl
, and ,[6] Periodic solutions of a class of singular Hamiltonian systems, Nonlinear Analysis ; T.M.A., Vol. 12, 1988, pp. 259-269. | MR | Zbl
,[7] Remarks on periodic solutions for some dynamical systems with singularities, Periodic solutions of Hamiltonian systems and related topics, P. H. RABINOWITZ et al. Eds., V209, NATO ASI Series, Reidel, 1987, pp. 169-173. | MR | Zbl
,[8] Conservative dynamical systems involving strong forces, Trans. Am. Math. Soc., Vol. 204, 1975, pp. 113-135. | MR | Zbl
,[9] Lectures on closed geodesics, Grundlehren der Math. Wis.., Vol. 235, Springer-Verlag, Berlin-New York, 1978. | MR | Zbl
,[10] Variational problems on closed manifolds, Dokl. Akad. Nauk. U.S.S.R. (N.S.), Vol. 81, 1951, pp. 17-18. | MR | Zbl
and ,[11] Minimax methods in critical point theory with applications to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. #65, Am. Math. Soc., Providence, RI, 1986. | MR | Zbl
,[12] Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol. 6, 1989, pp. 331-346. | EuDML | Numdam | MR | Zbl
,[13] Homoclinic orbits on compact manifolds, preprint, Università di Pisa, 1989. | MR | Zbl
and ,[14] A variational approach to homoclinic orbits in Hamiltonian systems, preprint, S.I.S.S.A., 1988.
and ,