Selmer complexes
Astérisque, no. 310 (2006) , 567 p.
@book{AST_2006__310__R1_0,
     author = {Nekov\'a\v{r}, Jan},
     title = {Selmer complexes},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {310},
     year = {2006},
     mrnumber = {2333680},
     zbl = {1211.11120},
     language = {en},
     url = {http://www.numdam.org/item/AST_2006__310__R1_0/}
}
TY  - BOOK
AU  - Nekovář, Jan
TI  - Selmer complexes
T3  - Astérisque
PY  - 2006
IS  - 310
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2006__310__R1_0/
LA  - en
ID  - AST_2006__310__R1_0
ER  - 
%0 Book
%A Nekovář, Jan
%T Selmer complexes
%S Astérisque
%D 2006
%N 310
%I Société mathématique de France
%U http://www.numdam.org/item/AST_2006__310__R1_0/
%G en
%F AST_2006__310__R1_0
Nekovář, Jan. Selmer complexes. Astérisque, no. 310 (2006), 567 p. http://numdam.org/item/AST_2006__310__R1_0/

[A-C] J. Arthur & L. Clozel - Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton Univ. Press, Princeton, 1989. | MR | Zbl

[A-T] E. Artin & J. Tate - Class field theory, 2nd ed., Addison-Wesley, Red wood City, 1990. | MR | Zbl

[Be] L. Berger - Limites de représentations cristallines, Compositio Math. 140 (2004), p. 1473-1498. | MR | Zbl | DOI

[B-B-M] P. Berthelot, L. Breen & W. Messing - Théorie de Dieudonné cristalline, II, Lect. Notes in Math., vol. 930, Springer, Berlin, 1982. | MR | Zbl

[B-D1] M. Bertolini & H. Darmon - Derived heights and generalized Mazur-Tate regulators, Duke Math. J. 76 (1994), p. 75-111. | MR | Zbl | DOI

[B-D2] M. Bertolini & H. Darmon, Derived p-adic heights, Amer. J. Math. 117 (1995), p. 1517-1554. | MR | Zbl | DOI

[B-D3] M. Bertolini & H. Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996), p. 413-456. | MR | Zbl | DOI

[B1] D. Blasius - Hilbert modular forms and the Ramanujan conjecture, preprint available at http://www.arxiv.org/abs/math.NT/0511007. | Zbl | MR | DOI

[B-K] S. Bloch & K. Kato - L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, I, Progress in Mathematics, vol. 86, Birkhäuser, Boston, Basel, Berlin, 1990, p. 333-400. | MR | Zbl

[Bou] N. Bourbaki - Commutative algebra. Chapters 1-7, Springer, Berlin, 1989. | MR

[Bo-Car] J.-F. Boutot & H. Carayol - Uniformisation p-adique des courbes de Shimura : les théorèmes de Čerednik et de Drinfeld, Astérisque, vol. 196-197, Soc. Math. France, Paris, 1991, p. 45-158. | MR | Zbl

[B-C-D-T] C. Breuil, B. Conrad, F. Diamond & R. Taylor - On the modularity of elliptic curves over 𝐐: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), p. 843-939. | MR | Zbl | DOI

[Bre] C. Breuil - Une remarque sur les représentations locales p-adiques et les congruences entre formes modulaires de Hilbert, Bull. Soc. Math. France 127 (1999), p. 459-472. | MR | EuDML | Zbl | Numdam | DOI

[Br-Sh] M. Brodmann & R. Sharp - Local cohomology: an algebraic introduction with geometric applications, Cambridge Stud. in Adv. Math., vol. 60, Cambridge Univ. Press, Cambridge, 1998. | MR | Zbl

[Bro] K. Brown - Cohomology of groups, Grad. Texts in Math., vol. 87, Springer, New York, Berlin, 1982. | MR

[Bru] A. Brumer - Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), p. 442-470. | MR | Zbl | DOI

[Br-He] W. Bruns & J. Herzog - Cohen-Macaulay rings, Cambridge Stud. in Adv. Math., vol. 39, Cambridge Univ. Press, Cambridge, 1993. | MR | Zbl

[B-L] J.-L. Brylinski & J.-P. Labesse - Cohomologie d'intersection et fonctions L de certaines variétés de Shimura, Ann. Sci. École Norm. Sup. 17 (1984), p. 361-412. | MR | EuDML | Zbl | Numdam | DOI

[Bu-Fl1] D. Burns & M. Flach - Tamagawa numbers for motives with (non-commutative) coefficients, Doc. Math. 6 (2001), p. 501-570, (electronic). | MR | EuDML | Zbl

[Bu-Fl2] D. Burns & M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, II, Amer. J. Math. 125 (2003), p. 475-512. | MR | Zbl | DOI

[Bu-Gr] D. Burns & C. Greither - On the Equivariant Tamagawa Number Conjecture for Tate motives, Invent. Math. 153 (2003), p. 303-359. | MR | Zbl | DOI

[Bu-Ve] D. Burns & O. Venjakob - On the leading terms of Zeta isomorphisms and p-adic L-functions in non-commutative Iwasawa theory, Doc. Math., extra vol.: John Coates' Sixtieth Birthday (2006), p. 165-209. | MR | EuDML | Zbl

[Car] H. Carayol - Sur les représentations -adiques attachées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. 19 (1986), p. 409-469. | MR | EuDML | DOI

[C-E] H. Cartan & S. Eilenberg - Homological algebra, Princeton Univ. Press, Princeton, 1956. | MR | Zbl

[Cas] W. Casselman - On some results of Atkin and Lehner, Math. Ann. 201 (1973), p. 301-314. | MR | EuDML | Zbl | DOI

[Ca1] J. Cassels - Arithmetic on curves of genus 1. I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959), p. 52-99. | MR | EuDML | Zbl

[Ca2] J. Cassels, Arithmetic on curves of genus 1. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), p. 95-112. | MR | EuDML | Zbl

[Če] I. Čerednik - Uniformization of algebraic curves by discrete arithmetic subgroups of PGL 2 (k w ) with compact quotient spaces, Mat. Sbornik 29 (1976), p. 55-78. | MR | DOI

[Co-Gr] J. Coates & R. Greenberg - Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), p. 129-174. | MR | Zbl | DOI

[Col] P. Colmez - Théorie d'Iwasawa des représentations de de Rham d'un corps local, Ann. of Math. (2) 148 (1998), p. 485-571. | MR | Zbl | DOI

[Con] B. Conrad - Grothendieck duality and base change, Lect. Notes in Math., vol. 1750, Springer, Berlin, 2000. | MR | Zbl

[Cor] C. Cornut - Mazur's conjecture on higher Heegner points, Invent. Math. 148 (2002), p. 495-523. | MR | Zbl | DOI

[Cor-Va] C. Cornut & V. Vatsal - Nontriviality of Rankin-Selberg L-functions and CM points, to appear in L-functions and Galois representations (Durham, July 2004), Cambridge Univ. Press. | MR | Zbl

[Cu-Re] C. Curtis & I. Reiner - Methods of Representation Theory, I, Wiley, New York, 1981. | MR

[De1] P. Deligne - Formes modulaires et représentations -adiques, in Séminaire Bourbaki, 1968/69 (Berlin), Lect. Notes in Math., vol. 179, Springer, 1971, Exp. 355. | MR | Zbl | Numdam | EuDML | DOI

[De2] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in Modular functions of one variable, II (Antwerp, 1972), Lect. Notes in Math., vol. 349, Springer, Berlin, 1973, p. 501-597. | MR | DOI

[De3] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, in Automorphic forms, representations and L-functions (Corvallis, 1977), Proc. Symposia Pure Math., vol. 33/II, Amer. Math. Soc., Providence, 1979, p. 313-346. | MR | DOI

[De4] P. Deligne, La conjecture de Weil, II, Publ. Math. de l'I.H.É.S. 52 (1980), p. 137-252. | MR | EuDML | Zbl | Numdam | DOI

[De-Se] P. Deligne & J.-P. Serre - Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. 7 (1974), p. 507-530. | MR | EuDML | Zbl | Numdam | DOI

[Dic] L. Dickson - Linear groups: With an exposition of the Galois field theory, Dover, New York, 1958. | MR

[Dim] M. Dimitrov - Galois representations modulo p and cohomology of Hilbert modular varieties, Ann. Sci. École Norm. Sup. 38 (2005), p. 505-551. | MR | EuDML | Zbl | DOI

[Dr] V. Drinfeld - Coverings of p-adic symmetric domains, Funkc. Anal. i Priloz. 10 (1976), p. 29-40. | MR

[Fl1] M. Flach - A generalization of the Cassels-Tate pairing, J. Reine Angew. Math. 412 (1990), p. 113-127. | MR | EuDML | Zbl

[Fl2] M. Flach, Euler characteristics in relative K-groups, Bull. London Math. Soc. 32 (2000), p. 272-284. | MR | Zbl | DOI

[Fo1] J.-M. Fontaine - Valeurs spéciales des fonctions L des motifs, in Séminaire Bourbaki, 1991/92, Astérisque, vol. 206, Soc. Math. France, Paris, 1992, Exp. 751, p. 205-249. | MR | EuDML | Zbl | Numdam

[Fo2] J.-M. Fontaine, Représentations -adiques potentiellement semi-stables, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque, vol. 223, Soc. Math. France, Paris, 1994, p. 321-347. | MR | Zbl | Numdam

[Fo-Ma] J.-M. Fontaine & B. Mazur - Geometric Galois representations, in Elliptic Curves, Modular Forms and Fermat's Last Theorem (J. Coates & S. Yau, eds.), International Press, Boston, 2nd ed., 1997, p. 190-227. | MR

[Fo-PR] J.-M. Fontaine & B. Perrin-Riou - Autour des conjectures de Bloch et Kato : cohomologie galoisienne et valeurs de fonctions L, in Motives (Seattle, 1991), Proc. Symposia in Pure Math., vol. 55/I, Amer. Math. Soc., Providence, 1994, p. 599-706. | MR | Zbl | DOI

[F-H] S. Friedberg & J. Hoffstein - Nonvanishing theorems for automorphic L-functions on GL(2), Ann. of Math. (2) 142 (1995), p. 385-423. | MR | Zbl | DOI

[Fu-Ka] T. Fukaya & K. Kato - A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, to appear in Proc. St. Petersburg Math. Soc. | Zbl | MR

[G-J] S. Gelbart & H. Jacquet - Forms of GL(2) from the analytic point of view, in Automorphic forms, representations and L-functions (Corvallis, 1977), Proc. Symposia Pure Math, vol. 33/I, Amer. Math. Soc., Providence, 1979, p. 213-251. | MR | Zbl | DOI

[Gre1] R. Greenberg - The Iwasawa invariants of Γ-extensions of a fixed number field, Amer. J. Math. 95 (1973), p. 204-214. | MR | Zbl | DOI

[Gre2] R. Greenberg, Iwasawa theory for p-adic representations, in Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, 1989, p. 97-137. | MR | Zbl | DOI

[Gre3] R. Greenberg, Iwasawa theory for motives, in L-functions and arithmetic (Durham, 1989), London Math. Soc. Lect. Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, p. 211-233. | MR | Zbl

[Gre4] R. Greenberg, Iwasawa theory and p-adic deformations of motives, in Motives (Seattle, 1991), Proc. Symposia in Pure Math., vol. 55/II, Amer. Math. Soc., Providence, 1994, p. 193-223. | MR | Zbl | DOI

[Gre5] R. Greenberg, Iwasawa theory for elliptic curves, in Arithmetic theory of elliptic curves (Cetraro, 1997), Lect. Notes in Math., vol. 1716, Springer, Berlin, 1999, p. 51-144. | MR | Zbl | DOI

[Gre6] R. Greenberg, On the structure of certain Galois cohomology groups, Doc. Math., extra vol.: John Coates' Sixtieth Birthday (2006), p. 335-391. | EuDML | Zbl

[G-S] R. Greenberg & G. Stevens - p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111 (1993), p. 407-447. | MR | EuDML | Zbl | DOI

[He] G. Henniart - Représentations l-adiques abéliennes, in Séminaire de Théorie des Nombres de Paris, 1980/81 (M.-J. Bertin, éd.), Progress in Math., vol. 22, Birkhäuser, Boston, 1982, p. 107-126. | MR | Zbl

[Hi1] H. Hida - Galois representations into GL 2 (𝐙 p X) attached to ordinary cusp forms, Invent. Math. 85 (1986), p. 545-613. | MR | EuDML | DOI

[Hi2] H. Hida, On p-adic Hecke algebras for GL 2 over totally real fields, Ann. of Math. (2) 128 (1988), p. 295-384. | MR | Zbl | DOI

[Hi3] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields, in Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, 1989, p. 139-169. | MR | Zbl | DOI

[H-T] H. Hida & J. Tilouine - On the anticyclotomic main conjecture for CM fields, Invent. Math. 117 (1994), p. 89-147. | MR | EuDML | Zbl | DOI

[Ho1] B. Howard - The Heegner point Kolyvagin system, Compositio Math. 140 (2004), p. 1439-1472. | MR | Zbl | DOI

[Ho2] B. Howard, Iwasawa Theory of Heegner points on abelian varieties of GL 2 -type, Duke Math. J. 124 (2004), p. 1-45. | MR | Zbl | DOI

[Ho3] B. Howard, Derived p-adic heights and p-adic L-functions, Amer. J. Math. 126 (2004), p. 1315-1340. | MR | Zbl | DOI

[Iw] K. Iwasawa - On 𝐙 -extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), p. 246-326. | MR | Zbl | DOI

[Jac] H. Jacquet - Automorphic forms on GL(2), II, Lect. Notes in Math., vol. 278, Springer, Berlin, 1972. | Zbl

[J-L] H. Jacquet & R. Langlands - Automorphic forms on GL(2), Lect. Notes in Math., vol. 114, Springer, Berlin, 1970. | MR | Zbl

[J-PS-S] H. Jacquet, I. Piatetski-Shapiro & J. Shalika - Relèvement cubique non normal, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 12, p. 567-571. | MR | Zbl

[Ja1] U. Jannsen - Iwasawa modules up to isomorphism, in Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, 1989, p. 171-207. | MR | Zbl | DOI

[Ja2] U. Jannsen, On the -adic cohomology of varieties over number fields and its Galois cohomology, in Galois Groups over 𝐐 (Y. Ihara, K. Ribet & J.-P. Serre, eds.), MSRI Publ., vol. 16, Springer, New York, 1989, p. 315-360. | MR | DOI

[Ja3] U. Jannsen, A spectral sequence for Iwasawa adjoints, unpublished manuscript, 1994.

[Jan] J.-C. Jantzen - Moduln mit einem höchsten Gewicht, Lect. Notes in Math., vol. 750, Springer, Berlin, 1979. | MR | Zbl

[Je] C. Jensen - Les foncteurs dérivés de lim et leurs applications en théorie des modules, Lect. Notes in Math., vol. 254, Springer, Berlin, New York, 1972. | MR | Zbl

[Ka1] K. Kato - Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B dR , I, in Arithmetic algebraic geometry (Trento, 1991), Lect. Notes in Math., vol. 1553, Springer, Berlin, 1993, p. 50-163. | MR | Zbl | DOI

[Ka2] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, in Cohomologies p-adiques et applications arithmétiques, III, Astérisque, vol. 295, Soc. Math. France, Paris, 2004, p. 117-290. | MR | Zbl | Numdam

[Kaw] T. Kawasaki - On Macaulayfication of Noetherian schemes, Trans. Amer. Math. Soc. 352 (2000), p. 2517-2552. | MR | Zbl | DOI

[K-R] C. Khare & R. Ramakrishna - Finiteness of Selmer groups and deformation rings, Invent. Math. 154 (2003), p. 179-198. | MR | Zbl | DOI

[Ki] B. Kim - The Parity Theorem of Elliptic Curves at Primes with Super-singular Reduction, to appear in Compositio Math. | MR

[Kis] M. Kisin - Potentially semi-stable deformation rings, preprint, 2005. | MR | Zbl

[Lan] R. Langlands - Base change for GL(2), Annals of Mathematics Studies, vol. 96, Princeton Univ. Press, Princeton, 1980. | MR

[La] D. Lazard - Sur les modules plats, C. R. Acad. Sci. Paris 258 (1964), p. 6313-6316. | MR | Zbl

[Ly] R. Lyndon - Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), p. 650-665. | MR | Zbl | DOI

[Mat] H. Matsumura - Commutative ring theory, 2nd ed., Cambridge Stud. in Adv. Math., vol. 8, Cambridge Univ. Press, Cambridge, 1989. | MR

[M-T-T] B. Mazur, J. Tate & J. Teitelbaum - On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), p. 1-48. | MR | EuDML | Zbl | DOI

[Maz1] B. Mazur - Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), p. 183-266. | MR | EuDML | Zbl | DOI

[Maz2] B. Mazur, Modular curves and arithmetic, in Proceedings of the ICM 1983 (Warsaw), I PWN, Warsaw, 1984, p. 185-211. | Zbl

[M-R1] B. Mazur & K. Rubin - Studying the growth of Mordell-Weil, Doc. Math. (2003), p. 585-607, extra vol., (electronic). | EuDML | Zbl

[M-R2] B. Mazur & K. Rubin, Organizing the arithmetic of elliptic curves, Adv. in Math. 198 (2005), p. 504-546. | Zbl | DOI

[M-R3] B. Mazur & K. Rubin, Finding large Selmer groups, J. Diff. Geom. 70 (2005), p. 1-22. | Zbl | DOI

[M-R4] B. Mazur & K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, to appear, in Ann. of Math. | Zbl

[McCa1] W. Mccallum - Duality theorems in multivariable Iwasawa Theory of Number Fields, preprint, 1995.

[McCa2] W. Mccallum, Greenberg's conjecture and units in multiple 𝐙 p -extensions, Amer. J. Math. 123 (2001), p. 909-930. | Zbl | DOI

[McC1] J. Mccleary - A user's guide to spectral sequences, 2nd ed., Cambridge Stud. in Adv. Math., vol. 58, Cambridge Univ. Press, Cambridge, 2000.

[Mi] J. Milne - Arithmetic duality theorems, Persp. in Math., vol. 1, Academic Press, Boston, 1986. | Zbl

[Miy] T. Miyake - On automorphic forms on GL 2 and Hecke operators, Ann. of Math. (2) 94 (1971), p. 174-189. | Zbl | DOI

[Ne1] J. Nekovář - Kolyvagin's method for Chow groups of Kuga-Sato varieties, Invent. Math. 107 (1992), p. 99-125. | EuDML | Zbl | DOI

[Ne2] J. Nekovář, On p-adic height pairings, in Séminaire de Théorie des Nombres de Paris, 1990/91 (S. David, ed.), Progress in Math., vol. 108, Birkhäuser, Boston, 1993, p. 127-202. | Zbl

[Ne3] J. Nekovář, On the parity of ranks of Selmer groups, II, C. R. Acad. Sci. Sér. I Math. 332 (2001), no. 2, p. 99-104. | Zbl

[Ne4] J. Nekovář, The Euler system method for CM points on Shimura curves, to appear in L-functions and Galois representations (Durham, July 2004), Cambridge Univ. Press. | Zbl

[Ne5] J. Nekovář, On the parity of ranks of Selmer groups, III, preprint, 2006.

[N-P] J. Nekovář & A. Plater - On the parity of ranks of Selmer groups, Asian J. Math. 4 (2000), no. 2, p. 437-498. | Zbl | DOI

[Ng] T. Nguyen-Quang-Do - Formations de classes et modules d'Iwasawa, in Number theory (Noordwijkerhout, 1983), Lect. Notes in Math., vol. 1068, Springer, Berlin, 1984, p. 167-185. | Zbl

[Ni] W. Nizioł - Cohomology of crystalline representations, Duke Math. J. 71 (1993), p. 747-791. | Zbl | DOI

[N-S-W] J. Neukirch, A. Schmidt & K. Wingberg - Cohomology of number fields, Grund. der Math. Wiss., vol. 323, Springer, Berlin, 2000. | Zbl

[Oh1] M. Ohta - On l-adic representations attached to automorphic forms, Japan. J. Math. (N.S.) 8 (1982), p. 1-47. | Zbl | DOI

[Oh2] M. Ohta, On the zeta function of an abelian scheme over the Shimura curve, Japan. J. Math. 9 (1983), p. 1-25. | Zbl | DOI

[Oh3] M. Ohta, On the p-adic Eichler-Shimura isomorphism for Λ -adic cusp forms, J. Reine Angew. Math. 463 (1995), p. 49-98. | EuDML | Zbl

[PR1] B. Perrin-Riou - Arithmétique des courbes elliptiques et théorie d'Iwasawa, Mém. Soc. Math. France (N.S.), vol. 17, Soc. Math. France, Paris, 1984. | EuDML | Zbl | Numdam

[PR2] B. Perrin-Riou, Descente infinie et hauteur p -adique sur les courbes elliptiques à multiplication complexe, Invent. Math. 70 (1982/83), p. 369-398. | EuDML | Zbl | DOI

[PR3] B. Perrin-Riou, Fonctions Lp-adiques, théorie d'Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), p. 399-456. | EuDML | Zbl | Numdam | DOI

[PR4] B. Perrin-Riou, Théorie d'Iwasawa et hauteurs p-adiques (cas des variétés abéliennes), in Séminaire de Théorie des Nombres de Paris, 1990/91 (S. David, ed.), Progress in Math., vol. 108, Birkhäuser, Boston, 1993, p. 203-220. | Zbl

[PR5] B. Perrin-Riou, Théorie d'Iwasawa et hauteurs p-adiques, Invent. Math. 109 (1992), p. 137-185. | EuDML | Zbl | DOI

[PR6] B. Perrin-Riou, Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math. 115 (1994), p. 81-161. | Zbl | DOI

[Pl] A. Plater - Height pairings in families of deformations, J. Reine Angew. Math. 486 (1997), p. 97-127. | EuDML | Zbl

[Ri] K. Ribet - Galois action on division points of Abelian varieties with real multiplications, Amer. J. Math. 98 (1976), p. 751-804. | Zbl | DOI

[Ro] J. Rogawski - Modular forms, the Ramanujan conjecture and the Jacquet-Langlands correspondence, in Discrete groups, expanding graphs and invariant measures (A. Lubotzky, ed.), Progress in Math., vol. 125, Birkhäuser, Basel, 1994, appendix.

[Ru] K. Rubin - Abelian varieties, p-adic heights and derivatives, in Algebra and number theory (Essen, 1992), de Gruyter, Berlin, 1994, p. 247-266. | Zbl

[Sa] T. Saito - Hilbert modular forms and p-adic Hodge theory, preprint, 2001.

[Sc] N. Schappacher - Periods of Hecke Characters, Lect. Notes in Math., vol. 1301, Springer, Berlin, 1988. | Zbl

[Sch1] P. Schneider - Über gewisse Galoiscohomologiegruppen, Math. Z. 168 (1979), p. 181-205. | EuDML | Zbl | DOI

[Sch2] P. Schneider , Iwasawa L-functions of varieties over algebraic number fields. A first approach, Invent. Math. 71 (1983), p. 251-293. | EuDML | Zbl | DOI

[Sch3] P. Schneider, p-adic height pairings, II, Invent. Math. 79 (1985), p. 329-374. | EuDML | Zbl | DOI

[Sch-Te] P. Schneider & J. Teitelbaum - Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003), p. 145-196. | Zbl | DOI

[Se1] J.-P. Serre - Corps locaux, Hermann, Paris, 1962. | Zbl

[Se2] J.-P. Serre, Cohomologie Galoisienne, third ed., Lect. Notes in Math., vol. 5, Springer, Berlin, 1965.

[Se3] J.-P. Serre, Abelian l-adic representations and elliptic curves, W.A. Benjamin, New York, Amsterdam, 1968.

[Se4] J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), in Séminaire Delange-Pisot-Poitou, 1969/70, Collected Papers II, vol. 19, p. 581-592. | EuDML

[Se-Ta] J.-P. Serre & J. Tate - Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), p. 492-517. | Zbl | DOI

[Sh] G. Shimura - The special values of the zeta functions associated to Hilbert modular forms, Duke Math. J. 45 (1978), p. 637-679. | Zbl | DOI

[S-U] C. Skinner & E. Urban - Sur les déformations p-adiques de certaines représentations automorphes, J. Inst. Math. Jussieu 5 (2006), p. 629-698. | Zbl | DOI

[Tay1] R. Taylor - On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), p. 265-280. | EuDML | Zbl | DOI

[Tay2] R. Taylor, On Galois representations associated to Hilbert modular forms, II, in Elliptic Curves, Modular Forms and Fermat's Last Theorem (J. Coates & S. Yau, eds.), International Press, Boston, 1995, p. 185-191. | Zbl

[Tay3] R. Taylor, On icosahedral Artin representations, II, Amer. J. Math. 125 (2003), p. 549-566. | Zbl | DOI

[Tay4] R. Taylor, On the meromorphic continuation of degree two L-functions, Doc. Math., extra vol.: John Coates' Sixtieth Birthday (2006), p. 729-779. | EuDML | Zbl

[Tay5] R. Taylor, private communication.

[Ti] Y. Tian - Euler systems of CM points on Shimura curves, Ph.D. Thesis, Columbia University, 2003. | MR

[Va] V. Vatsal - Special values of anticyclotomic L-functions, Duke Math. J. 116 (2003), p. 219-261. | MR | Zbl | DOI

[Ve1] J.-L. Verdier - Appendix to [Se2].

[Ve2] J.-L. Verdier, Des catégories dérivées des catégories abéliennes, Astérisque, vol. 239, Soc. Math. France, Paris, 1996. | MR | Zbl | Numdam

[Wa1] J.-L. Waldspurger - Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2), Compositio Math. 54 (1985), p. 121-171. | MR | EuDML | Zbl | Numdam

[Wa2] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), p. 219-307. | MR | EuDML | Zbl

[We] C. Weibel - An introduction to homological algebra, Cambridge Stud. in Adv. Math., vol. 38, Cambridge Univ. Press, Cambridge, 1994. | MR | Zbl

[W] A. Weil - Exercices dyadiques, Invent. Math. 27 (1974), p. 1-22. | MR | EuDML | Zbl | DOI

[Wi] A. Wiles - On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), p. 529-573. | MR | EuDML | Zbl | DOI

[Win] K. Wingberg - Duality theorems for abelian varieties over 𝐙 p -extensions, in Algebraic number theory, Adv. Stud. Pure Math, vol. 17, Academic Press, Boston, 1989, p. 471-492. | MR | Zbl | DOI

[Ya] S. Yasuda - Local constants in torsion rings, preprint, 2001. | MR

[Zh1] S.-W. Zhang - Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), p. 27-147. | MR | EuDML | Zbl | DOI

[Zh2] S.-W. Zhang, Gross-Zagier formula for GL 2 , Asian J. Math. 5 (2001), p. 183-290. | MR | Zbl | DOI

[LC] A. Grothendieck - Local cohomology, Lect. Notes in Math., vol. 41, Springer, Berlin, New York, 1967. | Zbl | MR

[RD] R. Hartshorne - Residues and duality, Lect. Notes in Math., vol. 20, Springer, Berlin, New York, 1966. | MR | EuDML

[EGAI] A. Grothendieck - Éléments de géométrie algébrique, I, Publ. Math. de l'I.H.É.S. 4 (1960). | MR | Numdam

[EGAIV.2] A. Grothendieck, Éléments de géométrie algébrique, IV, Seconde Partie, Publ. Math. de l'I.H.É.S. 24 (1965). | Zbl | Numdam

[SGA6] A. Grothendieck, Théorie des Intersections et Théorème de Riemann-Roch, Lect. Notes in Math., vol. 225, Springer, Berlin, Heidelberg, New York, 1971. | MR | Zbl