Johnson-Morita theory in mapping class groups and monoids of homology cobordisms of surfaces
Winter Braids VI (Lille, 2016), Winter Braids Lecture Notes (2016), Exposé no. 4, 25 p.

This article is the notes of a series of lectures in the workshop “Winter Braids VI”, Lille, in February 2016. We begin by recalling fundamental facts on mapping class groups of surfaces and overview the theory of Johnson homomorphisms developed by Johnson himself and Morita. Then we see how this theory is extended as invariants of homology cobordisms of surfaces and discuss an application to knot theory.

DOI : 10.5802/wbln.15
Classification : 55R40, 32G15, 57R20
Mots-clés : Mapping class group; Torelli group; Johnson homomorphism; homology cobordism.
Sakasai, Takuya 1

1 Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
@article{WBLN_2016__3__A4_0,
     author = {Sakasai, Takuya},
     title = {Johnson-Morita theory in mapping class groups and monoids of homology cobordisms of surfaces},
     booktitle = {Winter Braids VI (Lille, 2016)},
     series = {Winter Braids Lecture Notes},
     note = {talk:4},
     pages = {1--25},
     publisher = {Winter Braids School},
     year = {2016},
     doi = {10.5802/wbln.15},
     mrnumber = {3707745},
     zbl = {1422.57051},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/wbln.15/}
}
TY  - JOUR
AU  - Sakasai, Takuya
TI  - Johnson-Morita theory in mapping class groups and monoids of homology cobordisms of surfaces
BT  - Winter Braids VI (Lille, 2016)
AU  - Collectif
T3  - Winter Braids Lecture Notes
N1  - talk:4
PY  - 2016
SP  - 1
EP  - 25
PB  - Winter Braids School
UR  - http://www.numdam.org/articles/10.5802/wbln.15/
DO  - 10.5802/wbln.15
LA  - en
ID  - WBLN_2016__3__A4_0
ER  - 
%0 Journal Article
%A Sakasai, Takuya
%T Johnson-Morita theory in mapping class groups and monoids of homology cobordisms of surfaces
%B Winter Braids VI (Lille, 2016)
%A Collectif
%S Winter Braids Lecture Notes
%Z talk:4
%D 2016
%P 1-25
%I Winter Braids School
%U http://www.numdam.org/articles/10.5802/wbln.15/
%R 10.5802/wbln.15
%G en
%F WBLN_2016__3__A4_0
Sakasai, Takuya. Johnson-Morita theory in mapping class groups and monoids of homology cobordisms of surfaces, dans Winter Braids VI (Lille, 2016), Winter Braids Lecture Notes (2016), Exposé no. 4, 25 p. doi : 10.5802/wbln.15. http://www.numdam.org/articles/10.5802/wbln.15/

[1] J. W. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA 9 (1923), 93–95. | DOI

[2] J. E. Andersen, A. Bene, J.-B. Meilhan, R. Penner, Finite type invariants and fatgraphs, Adv. Math. 225 (2010), 2117–2161. | DOI | MR | Zbl

[3] S. Andreadakis, On the automorphisms of free groups and free nilpotent groups, Proc. London Math. Soc. 15 (1965), 239–268. | DOI | MR | Zbl

[4] M. Asada, H. Nakamura, On graded quotient modules of mapping class groups of surfaces, Israel J. Math. 90 (1995), 93–113. | DOI | MR | Zbl

[5] K. L. Baker, Counting genus one fibered knots in Lens spaces, Mich. Math. J. 63 (2014), 553–569. | DOI | MR | Zbl

[6] K. L. Baker, A cabling conjecture for knots in lens spaces, Bol. Soc. Mat. Mex. 20 (2014), 449–465. | DOI | MR | Zbl

[7] J. Birman, Braids, Links and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press (1974). | DOI

[8] J. Birman, R. Craggs, The μ-invariant of 3-manifolds and certain structural properties of the group of homeomorphisms of a closed, oriented 2-manifold, Trans. Amer. Math. Soc. 237 (1978), 283–309. | DOI | MR | Zbl

[9] J. S. Birman, H. M. Hilden, On the mapping class groups of closed surfaces as covering spaces, Advances in the theory of Riemann surfaces, Ann. of Math. Studies 66 (1971), 81–115. | DOI

[10] S. K. Boldsen, Different versions of mapping class groups of surfaces, preprint (2009), arXiv:0908.2221.

[11] K. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, 1982. | DOI | Zbl

[12] J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math. France 89 (1961), 227–380. | DOI | Zbl

[13] J. C. Cha, S. Friedl, T. Kim, The cobordism group of homology cylinders, Compos. Math. 147 (2011), 914–942. | DOI | MR | Zbl

[14] J. Cha, C. Livingston, Table of Knot Invariants, http://www.indiana.edu/~knotinfo/.

[15] D. Cheptea, K. Habiro, G. Massuyeau, A functorial LMO invariant for Lagrangian cobordisms, Geom. Topol. 12 (2008), 1091–1170. | DOI | MR | Zbl

[16] T. Cochran, S. Harvey, P. Horn, Higher-order signature cocycles for subgroups of mapping class groups and homology cylinders, Int. Math. Res. Not. IMRN (2012), 3311–3373. | DOI | Zbl

[17] J. Conant, M. Kassabov, K. Vogtmann, Higher hairy graph homology, Geom. Dedicata 176 (2015), 345–374. | DOI | MR | Zbl

[18] J. Conant, R. Schneiderman, P. Teichner, Geometric filtrations of string links and homology cylinders, Quantum Topology 7 (2016), 281–328. | DOI | MR | Zbl

[19] R. Crowell, H. Trotter, A class of pretzel knots, Duke Math. J. 30 (1963), 373–377. | DOI | MR | Zbl

[20] A. Dimca, S. Papadima, Arithmetic group symmetry and finiteness properties of Torelli groups, Ann. of Math. 177 (2013), 395–423. | DOI | MR | Zbl

[21] C. J. Earle, J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. | DOI | Zbl

[22] J. Eisner, Knots with infinitely many minimal spanning surfaces, Trans. Amer. Math. Soc. 229 (1977), 329–349. | DOI | MR | Zbl

[23] N. Enomoto, T. Satoh, New series in the Johnson cokernels of the mapping class groups of surfaces, Algebr. Geom. Topol. 14 (2014), 627–669. | DOI | MR | Zbl

[24] B. Farb, D. Margalit, A primer on mapping class groups, Princeton Math. Ser. 49, Princeton University Press, (2012). | DOI | Zbl

[25] S. Friedl, T. Kim, The Thurston norm, fibered manifolds and twisted Alexander polynomials, Topology 45 (2006), 929–953. | DOI | MR | Zbl

[26] S. Garoufalidis, N. Goussarov, M. Polyak, Calculus of clovers and finite type invariants of 3-manifolds, Geom. Topol. 5 (2001), 75–108. | DOI | MR | Zbl

[27] S. Garoufalidis, J. Levine, On finite-type 3-manifold invariants, II, Math. Ann. 306 (1996), 691–718. | DOI | MR | Zbl

[28] S. Garoufalidis, J. Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math. 73 (2005), 173–205. | DOI | Zbl

[29] H. Goda, T. Sakasai, Homology cylinders and sutured manifolds for homologically fibered knots, Tokyo J. Math. 36 (2013), 85–111. | DOI | MR | Zbl

[30] H. Goda, T. Sakasai, Factorization formulas and computations of higher-order Alexander invariants for homologically fibered knots, J. Knot Theory Ramifications 20 (2011), 1355–1380. | DOI | MR | Zbl

[31] H. Goda, T. Sakasai, Abelian quotients of monoids of homology cylinders, Geom. Dedicata 151 (2011), 387–396. | DOI | MR | Zbl

[32] H. Goda, T. Sakasai, Johnson homomorphisms as fibering obstructions of homologically fibered knots, RIMS kokyuroku 1747 (2011), 47–66.

[33] M. Goussarov, Finite type invariants and n-equivalence of 3-manifolds, C. R. Math. Acad. Sci. Paris 329 (1999), 517–522. | DOI | MR | Zbl

[34] A. Gramain, Le type d’homotopie du groupe des difféomorphismes d’une surface compacte, Ann. Sci. École Norm. Sup. 6 (1973), 53–66. | DOI | Zbl

[35] N. Habegger, Milnor, Johnson, and tree level perturbative invariants, preprint (2000).

[36] N. Habegger, C. Sorger, An infinitesimal presentation of the Torelli group of a surface with boundary, preprint (2000).

[37] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83. | DOI | MR | Zbl

[38] K. Habiro, G. Massuyeau, Symplectic Jacobi diagrams and the Lie algebra of homology cylinders, J. Topology 2 (2009), 527–569. | DOI | MR | Zbl

[39] K. Habiro, G. Massuyeau, From mapping class groups to monoids of homology cobordisms: a survey, Handbook of Teichmüller theory volume III (editor: A. Papadopoulos) (2012), 465–529. | DOI | Zbl

[40] R. Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), 597–651. | DOI | Zbl

[41] A. Hatcher, D. Margalit, Generating the Torelli group, Enseign. Math. 58 (2012), 165–188. | DOI | MR | Zbl

[42] A. Heap, Bordism invariants of the mapping class group, Topology 45 (2006), 851–886. | DOI | MR | Zbl

[43] K. Igusa, K. Orr, Links, pictures and the homology of nilpotent groups, Topology 40 (2001), 1125–1166. | DOI | MR | Zbl

[44] N. V. Ivanov, Mapping class groups, Handbook of geometric topology (2002), 523–633. | DOI | Zbl

[45] D. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), 119–125. | DOI | MR | Zbl

[46] D. Johnson, An abelian quotient of the mapping class group g , Math. Ann. 249 (1980), 225–242. | DOI | Zbl

[47] D. Johnson, Quadratic forms and the Birman-Craggs homomorphisms, Trans. Amer. Math. Soc 261 (1980), 235–254. | DOI | MR | Zbl

[48] D. Johnson, A survey of the Torelli group, Contemp. Math. 20 (1983), 165–179. | DOI | Zbl

[49] D. Johnson, The structure of the Torelli group I: A finite set of generators for , Ann. of Math. 118 (1983), 423–442. | DOI | MR | Zbl

[50] D. Johnson, The structure of the Torelli group II: A characterization of the group generated by twists on bounding curves, Topology 24 (1985), 113–126. | DOI | MR | Zbl

[51] D. Johnson, The structure of the Torelli group III: The abelianization of g , Topology 24 (1985), 127–144. | DOI | MR | Zbl

[52] N. Kawazumi, Cohomological Aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.

[53] N. Kawazumi, Y. Kuno, The Goldman-Turaev Lie bialgebra and the Johnson homomorphisms, Handbook of Teichmüller theory volume V (editor: A. Papadopoulos) (2015), 98–165. | DOI | Zbl

[54] T. Kitano, Johnson’s homomorphisms of subgroups of the mapping class group, the Magnus expansion and Massey higher products of mapping tori, Topology Appl. 69 (1996), 165–172. | DOI | MR | Zbl

[55] T. Kitayama, Homology cylinders of higher-order, Algebr. Geom. Topol. 12 (2012), 1585–1605. | DOI | MR | Zbl

[56] M. Korkmaz, A. Stipsicz, The second homology groups of mapping class groups of oriented surfaces, Math. Proc. Cambridge Philos. Soc. 134 (2003), 479–489. | DOI | Zbl

[57] J. Levine, Homology cylinders: an enlargement of the mapping class group, Algebr. Geom. Topol. 1 (2001), 243–270. | DOI | MR | Zbl

[58] J. Levine, The Lagrangian filtration of the mapping class group and finite-type invariants of homology spheres, Math. Proc. Cambridge Philos. Soc. 141 (2006), 303–315. | DOI | MR | Zbl

[59] W. Magnus, A. Karrass. D. Solitar, Combinatorial group theory, Interscience Publ., (1966). | DOI

[60] G. Massuyeau, Spin Borromean surgeries, Trans. Amer. Math. Soc. 355 (2003), 3991–4017. | DOI | Zbl

[61] G. Massuyeau, Finite-type invariants of 3-manifolds and the dimension subgroup problem, J. Lond. Math. Soc. 75 (2007), 791–811. | DOI | MR | Zbl

[62] G. Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France 140 (2012), 101–161. | DOI | Numdam | MR | Zbl

[63] G. Massuyeau, J.-B. Meilhan, Characterization of Y 2 -equivalence for homology cylinders, J. Knot Theory Ramifications 12 (2003), 493–522. | DOI | Zbl

[64] G. Massuyeau, J.-B. Meilhan, Equivalence relations for homology cylinders and the core of the Casson invariant, Trans. Amer. Math. Soc. 365 (2013), 5431–5502. | DOI | MR | Zbl

[65] G. Massuyeau, T. Sakasai, Morita’s trace maps on the group of homology cobordisms, preprint, arXiv:math.GT/1606.08244. | DOI

[66] S. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268–278, 345 (Russian); English translation: Math. Notes 42 (1987), 651–656. | DOI | Zbl

[67] J.-B. Meilhan, Goussarov-Habiro theory for string links and the Milnor-Johnson correspondence, Topology Appl. 153 (2006) 2709–2729. | DOI | MR | Zbl

[68] G. Mess, The Torelli groups for genus 2 and 3 surfaces, Topology 31 (1992), 775–790. | DOI | MR | Zbl

[69] W. Meyer, Die Signatur von Flächenbündeln, Math. Ann. 201 (1973), 239–264. | DOI | Zbl

[70] S. Morita, Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551–577. | DOI | MR | Zbl

[71] S. Morita, Casson’s invariant for homology 3-spheres and characteristic classes of surface bundles. I, Topology 28 (1989), 305–323. | DOI | MR | Zbl

[72] S. Morita, The extension of Johnson’s homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993), 197–224. | DOI | MR | Zbl

[73] S. Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), 699–726. | DOI | Zbl

[74] S. Morita, Cohomological structure of the mapping class group and beyond, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., 74 (2006), 329–354, | DOI | Zbl

[75] S. Morita, Introduction to mapping class groups of surfaces and related groups, Handbook of Teichmüller theory volume I (editor: A. Papadopoulos) (2007), 353–386. | DOI | Zbl

[76] S. Morita, T. Sakasai, M. Suzuki, Structure of symplectic invariant Lie subalgebras of symplectic derivation Lie algebras, Adv. Math. 282 (2015), 291–334. | DOI | MR | Zbl

[77] D. Mumford, Abelian quotients of the Teichmüller modular group, J. Analyse Math. 18 (1967), 227–244. | DOI | Zbl

[78] J. Munkres, Differentiable isotopies on the 2-sphere, Michigan Math. J. 7 (1960), 193–197. | DOI | MR | Zbl

[79] K. Murasugi, On a certain subgroup of the group of an alternating link, Amer. J. Math. 85 (1963), 544–550. | DOI | MR | Zbl

[80] R. Myers, Open book decompositions of 3-manifolds, Proc. Amer. Math. Soc. 72 (1978), 397–402. | DOI | MR | Zbl

[81] R. Myers, Homology cobordisms, link concordances, and hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 278 (1983), 271–288. | DOI | MR | Zbl

[82] R. Myers, Concordance of Seifert surfaces, preprint, arXiv:math.GT/1701.00516. | DOI | MR | Zbl

[83] Y. Nozaki, Every lens space contains a genus one homologically fibered knot, preprint, arXiv:math.GT/1702.02731. | DOI | MR | Zbl

[84] R. S. Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960), 305–312. | DOI | MR | Zbl

[85] W. Pitsch, Integral homology 3-spheres and the Johnson filtration, Trans. Amer. Math. Soc. 360 (2008), 2825–2847. | DOI | MR | Zbl

[86] J. Powell, Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978), 347–350. | DOI | MR | Zbl

[87] A. Putman, The Johnson homomorphism and its kernel, preprint, arXiv:math.GT/0904.04667. | DOI | MR | Zbl

[88] A. Putman, Small generating sets for the Torelli group, Geom. Topol. 16 (2012), 111–125. | DOI | MR | Zbl

[89] A. Putman, The Torelli group and congruence subgroups of the mapping class group, Moduli spaces of Riemann surfaces, IAS/Park City Math. Ser., 20 (2013), 169–196. | DOI | Zbl

[90] T. Sakasai, Homology cylinders and the acyclic closure of a free group, Algebr. Geom. Topol. 6 (2006), 603–631. | DOI | MR | Zbl

[91] T. Sakasai, The Magnus representation and higher-order Alexander invariants for homology cobordisms of surfaces, Algebr. Geom. Topol. 8 (2008), 803–848. | DOI | MR | Zbl

[92] T. Sakasai, A survey of Magnus representations for mapping class groups and homology cobordisms of surfaces, Handbook of Teichmüller theory volume III (editor: A. Papadopoulos) (2012), 531–594. | DOI | Zbl

[93] T. Satoh, A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics, Handbook of Teichmüller theory volume V (editor: A. Papadopoulos) (2016), 167–209. | DOI | Zbl

[94] S. Smale, Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626. | DOI | MR | Zbl

[95] M. Song, Invariants and structures of the homology cobordism group of homology cylinders, Algebr. Geom. Topol. 16 (2016), 899–943. | DOI | MR | Zbl

[96] M. Scharlemann, A. Thompson, Finding disjoint Seifert surfaces, Bull. London Math. Soc. 20 (1988), 61–64. | DOI | MR | Zbl

[97] J. Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. | DOI | MR | Zbl

[98] Y. Yokomizo, An Sp(2g; 2 )-module structure of the cokernel of the second Johnson homomorphism, Topology Appl. 120 (2002), 385–396. | DOI | Zbl

[99] Y. Yokomizo, private communication.

Cité par Sources :