@incollection{AST_2014__361__421_0, author = {Riou, Jo\"el}, title = {La conjecture de {Bloch-Kato} [d'apr\`es {M.} {Rost} et {V.} {Voevodsky]}}, booktitle = {S\'eminaire Bourbaki volume 2012/2013 : expos\'es 1059-1073 - Avec table par noms d'auteurs de 1948/49 \`a 2012/13}, series = {Ast\'erisque}, note = {talk:1073}, pages = {421--463}, publisher = {Soci\'et\'e math\'ematique de France}, number = {361}, year = {2014}, mrnumber = {3289290}, zbl = {1366.19001}, language = {fr}, url = {http://www.numdam.org/item/AST_2014__361__421_0/} }
TY - CHAP AU - Riou, Joël TI - La conjecture de Bloch-Kato [d'après M. Rost et V. Voevodsky] BT - Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13 AU - Collectif T3 - Astérisque N1 - talk:1073 PY - 2014 SP - 421 EP - 463 IS - 361 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2014__361__421_0/ LA - fr ID - AST_2014__361__421_0 ER -
%0 Book Section %A Riou, Joël %T La conjecture de Bloch-Kato [d'après M. Rost et V. Voevodsky] %B Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13 %A Collectif %S Astérisque %Z talk:1073 %D 2014 %P 421-463 %N 361 %I Société mathématique de France %U http://www.numdam.org/item/AST_2014__361__421_0/ %G fr %F AST_2014__361__421_0
Riou, Joël. La conjecture de Bloch-Kato [d'après M. Rost et V. Voevodsky], dans Séminaire Bourbaki volume 2012/2013 : exposés 1059-1073 - Avec table par noms d'auteurs de 1948/49 à 2012/13, Astérisque, no. 361 (2014), Exposé no. 1073, 43 p. http://www.numdam.org/item/AST_2014__361__421_0/
[1] Revêtements étales et groupe fondamental (SGA 1) - Documents Mathématiques (Paris), vol. 3, Soc. Math. France, Paris, 2003, Séminaire de géométrie algébrique du Bois-Marie 1960-61. Séminaire dirigé par A. Grothendieck, Augmenté de deux exposés de Mme . | Zbl
[2] Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique I, Astérisque, vol. 314, Soc. Math. France, Paris, 2007. | Numdam | MR | Zbl
-[3] The Milnor ring of a global field », in Algebraic -theory II: "Classical" algebraic -theory and connections with arithmetic (Seattle, Battelle Memorial Inst., 1972), Lecture Notes in Math., vol. 342, Springer, Berlin, 1973, p. 349-446. | MR | Zbl
& - «[4] Lectures on algebraic cycles, Duke University Mathematics Series, IV, Duke University Mathematics Department, Durham, 1980. | MR | Zbl
-[5] -adic étale cohomology », Publ. Math. IHÉS 63 (1986), p. 107-152. | DOI | EuDML | Numdam | MR | Zbl
& - «[6] Cohomologie non ramifiée et conjecture de Hodge entière », Duke Math. J. 161 (2012), p. 735-801. | DOI | MR | Zbl
& - «[7] Motivic complexes of Suslin and Voevodsky », in Séminaire Bourbaki, vol. 1996/97, exp. n° 833, Astérisque, vol. 245, Soc. Math. France, Paris, 1997, p. 355-378. | EuDML | Numdam | MR | Zbl
- «[8] The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky », J. reine angew. Math. 530 (2001), p. 55-103. | MR | Zbl
& - «[9] Symbole galoisien -adique et théorème de Suslin-Voevodsky », J. Math. Kyoto Univ. 47 (2007), no. 4, p. 665-690. | DOI | MR | Zbl
- «[10] Central simple algebras and Galois cohomology, Cambridge Stud. Adv. Math., vol. 101, Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
& -[11] Simplicial homotopy theory, Progr. Math., vol. 174, Birkhäuser Verlag, Basel, 1999. | MR | Zbl
& -[12] Norm varieties and the chain lemma (after Markus Rost) », in Algebraic Topology, Abel Symp., vol. 4, Springer, Berlin, 2009, p. 95-130. | DOI | MR | Zbl
& - «[13] Kato conjecture and motivic cohomology over finite fields », http://arxiv.org/abs/0910.2815.
& - «[14] Motivic symmetric spectra », Doc. Math. 5 (2000), p. 445-553 (electr.). | EuDML | MR | Zbl
- «[15] La conjecture de Milnor (d'après V. Voevodsky) », in Séminaire Bourbaki, vol. 1996/97, exp. n° 834, Astérisque, vol. 245, Soc. Math. France, Paris, 1997, p. 379-418. | EuDML | Numdam | MR | Zbl
- «[16] Classes de cycles motiviques étales », Algebra Number Theory 6 (2012), no. 7, p. 1369-1407. | DOI | MR | Zbl
, «[17] Unramified cohomology of quadrics I », Amer. J. Math 120 (1998), p. 841-891. | DOI | MR | Zbl
, & - «[18] Birational motives I », http://www.math.jussieu.fr/~kahn/preprints/birat11.pdf. | MR | Zbl
& - «[19] A generalization of local class field theory by using -groups I », J. Fac. Sci. Univ. Tokyo Sect, IA Math. 26 (1979), no. 2, p. 303-376. | MR | Zbl
- «[20] A generalization of local class field theory by using -groups II », J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 3, p. 603-683. | MR | Zbl
, «[21] A Hasse principle for two-dimensional global fields », J. Reine Angew. Math. 366 (1986), p. 142-183, With an appendix by Jean-Louis Colliot-Thélène. | MR | Zbl
, «[22] Global class field theory of arithmetic schemes », in Applications of algebraic -theory to algebraic geometry and number theory I & II (Boulder, 1983), Contemp. Math., vol. 55. Amer. Math. Soc., Providence, 1986, p. 255-331. | DOI | MR | Zbl
& - «[23] The Gersten conjecture for Milnor -theory », Invent. Math. 175 (2009), no. 1, p. 1-33. | DOI | MR | Zbl
- «[24] Cohomological Hasse principle and motivic cohomology for arithmetic schemes », Publ. Math. IHÉS 115 (2012), p. 123-183. | DOI | Numdam | MR | Zbl
& - «[25] Algebraic cobordism, Springer Monogr. in Math., Springer, Berlin, 2007. | MR | Zbl
& -[26] Cobordisme des variétés algébriques (d'après M. Levine et F. Morel) », in Séminaire Bourbaki, vol. 2001/02, exp. n° 901, Astérisque, vol. 290, Soc. Math. France, Paris, 2003, p. 167-192. | EuDML | Numdam | MR | Zbl
- «[27] Lecture notes on motivic cohomology, Clay Math. Monogr., vol. 2, Amer. Math. Soc., Providence, 2006. | MR | Zbl
, & -[28] -cohomology of Severi-Brauer varieties and the norm residue homomorphism ». Izv. Akad, Nauk SSSR, Ser. Mat. 46 (1982), p. 1011-1046, p. 1135-1136. | MR | Zbl
& - «[29] Algebraic -theory and quadratic forms », Invent. Math. 9 (1969/1970), p. 318-344. | DOI | EuDML | MR | Zbl
- «[30] -homotopy theory of schemes », Publ. Math. IHÉS 90 (1999), p. 45-143. | DOI | EuDML | Numdam | MR | Zbl
& - «[31] Der Hauptgeschlechtssatz für relativ-galoissche Zahlkörper », Math. Ann. 108 (1933), no. 1, p. 411-419. | DOI | EuDML | JFM | MR
- «[32] Opérations de Steenrod motiviques », arXiv:1207.3121, 2012.
- «[33] Chow groups with coefficients », Doc. Math. 1 (1996), p. 319-393 (electr.). | EuDML | MR | Zbl
- «[34] Cohomologie galoisienne, 5e éd., Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin, 1994. | MR | Zbl
-[35] Norm varieties », J. Pure Appl. Algebra 206 (2006), p. 245-276. | DOI | MR | Zbl
& - «[36] Singular homology of abstract algebraic varieties », Invent. Math. 123 (1996), p. 61-94. | DOI | EuDML | MR | Zbl
& - «[37] Bloch-Kato conjecture and motivic cohomology with finite coefficients ». in The arithmetic and geometry of algebraic cycles (Banff, 1998), NATO Sci. Ser. C Math. Phys. Sci., vol. 548, Kluwer Acad. Publ., Dordrecht, 2000, p. 117-189. | DOI | MR | Zbl
& , «[38] -homotopy theory », in Proceedings of the International Congress of Mathematicians, (Berlin, 1998) I, 1998, extra vol. I, p. 579-604 (electr.). | MR | Zbl
- «[39] Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic ». Int. Math. Res. Not. (2002), no. 7, p. 351-355. | DOI | MR | Zbl
, «[40] Motivic cohomology with -coefficients », Publ. Math. IHÉS (2003), no. 98, p. 59-104. | DOI | EuDML | Numdam | MR | Zbl
, «[41] Reduced power operations in motivic cohomology », Publ. Math. IHÉS (2003), no. 98, p. 1-57. | DOI | EuDML | Numdam | MR | Zbl
, «[42] Motives over simplicial schemes », J. K-Theory 5 (2010), no. 1, p. 1-38. | DOI | MR | Zbl
, «[43] Motivic Eilenberg-Maclane spaces », Publ. Math. IHÉS (2010), no. 112, p. 1-99. | DOI | Numdam | MR | Zbl
, «[44] On motivic cohomology with -coefficients », Ann. of Math. (2) 174 (2011), no. 1, p. 401-438. | DOI | MR | Zbl
, «[45] Cycles, transfers, and motivic homology theories, Ann. of Math. Stud., vol. 143, Princeton Univ. Press, Princeton, 2000. | MR | Zbl
, & -[46] Algebraic -theory of rings of integers in local and global fields », in Handbook of -theory I & II, Springer, Berlin, 2005, p. 139-190. | DOI | MR | Zbl
- «