@incollection{AST_2008__317__119_0, author = {Debarre, Olivier}, title = {Syst\`emes pluricanoniques sur les vari\'et\'es de type g\'en\'eral [d'apr\`es {Hacon-McKernan,} {Takayama,} {Tsuji]}}, booktitle = {S\'eminaire Bourbaki - Volume 2006/2007 - Expos\'es 967-981}, series = {Ast\'erisque}, note = {talk:970}, pages = {119--140}, publisher = {Soci\'et\'e math\'ematique de France}, number = {317}, year = {2008}, zbl = {1151.14031}, language = {fr}, url = {http://www.numdam.org/item/AST_2008__317__119_0/} }
TY - CHAP AU - Debarre, Olivier TI - Systèmes pluricanoniques sur les variétés de type général [d'après Hacon-McKernan, Takayama, Tsuji] BT - Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 AU - Collectif T3 - Astérisque N1 - talk:970 PY - 2008 SP - 119 EP - 140 IS - 317 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2008__317__119_0/ LA - fr ID - AST_2008__317__119_0 ER -
%0 Book Section %A Debarre, Olivier %T Systèmes pluricanoniques sur les variétés de type général [d'après Hacon-McKernan, Takayama, Tsuji] %B Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 %A Collectif %S Astérisque %Z talk:970 %D 2008 %P 119-140 %N 317 %I Société mathématique de France %U http://www.numdam.org/item/AST_2008__317__119_0/ %G fr %F AST_2008__317__119_0
Debarre, Olivier. Systèmes pluricanoniques sur les variétés de type général [d'après Hacon-McKernan, Takayama, Tsuji], dans Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981, Astérisque, no. 317 (2008), Exposé no. 970, 22 p. http://www.numdam.org/item/AST_2008__317__119_0/
[1] Effective freeness and point separation for adjoint bundles, Invent. Math. 122 (1995), p. 291-308. | DOI | EuDML | MR | Zbl
& -[2] Existence of minimal models for varieties of log general type, prépublication électronique arXiv:math.AG/0610203. | DOI | MR | Zbl
, , & -[3] Canonical models of surfaces of general type, Publ. Math. I.H.É.S. 42 (1973), p. 171-219. | DOI | EuDML | Numdam | MR | Zbl
-[4] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), p. 499-630. | DOI | EuDML | Numdam | MR | Zbl
-[5] Invariance for multiples of the twisted canonical bundle, Ann. Inst. Fourier (Grenoble) 57 (2007), p. 289-300. | DOI | EuDML | Numdam | MR | Zbl
-[6] vanishing theorems for positive line bundles and adjunction theory, in Transcendental methods in algebraic geometry (Cetraro, 1994), Lecture Notes in Math., vol. 1646, Springer, 1996, p. 1-97. | DOI | MR | Zbl
-[7] Restricted volumes and base loci of linear series, prépublication électronique arXivrmath.AG/0607221. | Zbl
, , , & -[8] Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), p. 1-25. | DOI | MR | Zbl
& -[9] Working with weighted complete intersections, in Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, 2000, p. 101-173. | DOI | MR | Zbl
-[10] Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), p. 893-899. | DOI | MR | Zbl
-[11] Introduction to the minimal model problem, in Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, 1987, p. 283-360. | DOI | MR | Zbl
, & -[12] Singularities of pairs, in Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., 1997, p. 221-287. | DOI | MR | Zbl
-[13] Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 49, Springer-Verlag, Heidelberg, 2004. | Zbl
-[14] A finiteness property of varieties of general type, Math. Ann. 262 (1983), p. 101-123. | DOI | EuDML | Zbl
-[15] Siu's invariance of plurigenera : a one-tower proof, à paraître dans J. Diff. Geom. | Zbl
-[16] Flat modules in algebraic geometry, Compositio Math. 24 (1972), p. 11-31. | EuDML | Numdam | Zbl
-[17] A general non-vanishing theorem and an analytic proof of the fînite generation of the canonical ring, prépublication électronique arXiv:math. AG/0610740.
-[18] Invariance of plurigenera, Invent. Math. 134 (1998), p. 661-673. | DOI | Zbl
,[19] Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, in Complex geometry (Göttingen, 2000), Springer, 2002, p. 223-277. | DOI | Zbl
,[20] Pluricanonical Systems on algebraic varieties of general type, Invent. Math. 165 (2006), p. 551-587. | DOI | Zbl
-[21] Pluricanonical Systems of projective -folds, prépublication électronique arXiv:math.AG/0204096.
-[22] Pluricanonical Systems of projective varieties of general type, prépublication électronique arXiv:math.AG/9909021. | Zbl
,[23] Pluricanonical Systems of projective varieties of general type II, prépublication électronique arXiv:math.AG/0409318. | Zbl
,[24] A Takayama-type extension theorem, prépublication électronique arXiv:math.CV/0607323. | DOI | Zbl
-[25] Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, in Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, 1983, p. 329-353. | DOI | Zbl
-[26] Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 30, Springer, 1995. | Zbl
,