Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes
The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 125-160.

The Deferred Correction (DeC) methods combined with the residual distribution (RD) approach allow the construction of high order continuous Galerkin (cG) schemes avoiding the inversion of the mass matrix. With the application of entropy correction functions we can even obtain entropy conservative/dissipative spatial discretizations in this context. To handle entropy production in time, a relaxation approach has been suggested by Ketcheson. The main idea is to slightly modify the time-step size such that the approximated solution fulfills the underlying entropy conservation/dissipation constraint. In this paper, we first study the relaxation technique applied to the DeC approach as an ODE solver, then we extend this combination to the residual distribution method, requiring more technical steps. The outcome is a class of cG methods that is fully entropy conservative/dissipative and where we can still avoid the inversion of a mass matrix.

Publié le :
DOI : 10.5802/smai-jcm.82
Classification : 65M60, 65L05
Mots clés : relaxation, entropy conservative / dissipation, deferred correction, residual distribution
Abgrall, Rémi 1 ; Le Mélédo, Élise 1 ; Öffner, Philipp 2 ; Torlo, Davide 3

1 Institute of Mathematics,University of Zurich, Switzerland
2 Institute of Mathematics, Johannes Gutenberg-University Mainz, Germany
3 SISSA mathLab, SISSA, Trieste, Italy
@article{SMAI-JCM_2022__8__125_0,
     author = {Abgrall, R\'emi and Le M\'el\'edo, \'Elise and \"Offner, Philipp and Torlo, Davide},
     title = {Relaxation {Deferred} {Correction} {Methods} and their {Applications} to {Residual} {Distribution} {Schemes}},
     journal = {The SMAI Journal of computational mathematics},
     pages = {125--160},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {8},
     year = {2022},
     doi = {10.5802/smai-jcm.82},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.82/}
}
TY  - JOUR
AU  - Abgrall, Rémi
AU  - Le Mélédo, Élise
AU  - Öffner, Philipp
AU  - Torlo, Davide
TI  - Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes
JO  - The SMAI Journal of computational mathematics
PY  - 2022
SP  - 125
EP  - 160
VL  - 8
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.82/
DO  - 10.5802/smai-jcm.82
LA  - en
ID  - SMAI-JCM_2022__8__125_0
ER  - 
%0 Journal Article
%A Abgrall, Rémi
%A Le Mélédo, Élise
%A Öffner, Philipp
%A Torlo, Davide
%T Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes
%J The SMAI Journal of computational mathematics
%D 2022
%P 125-160
%V 8
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.82/
%R 10.5802/smai-jcm.82
%G en
%F SMAI-JCM_2022__8__125_0
Abgrall, Rémi; Le Mélédo, Élise; Öffner, Philipp; Torlo, Davide. Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes. The SMAI Journal of computational mathematics, Tome 8 (2022), pp. 125-160. doi : 10.5802/smai-jcm.82. http://www.numdam.org/articles/10.5802/smai-jcm.82/

[1] Abgrall, Rémi A review of residual distribution schemes for hyperbolic and parabolic problems: the July 2010 state of the art, Commun. Comput. Phys., Volume 11 (2012) no. 4, pp. 1043-1080 | DOI | MR | Zbl

[2] Abgrall, Rémi High Order Schemes for Hyperbolic Problems Using Globally Continuous Approximation and Avoiding Mass Matrices, J. Sci. Comput., Volume 73 (2017) no. 2, pp. 461-494 | DOI | MR | Zbl

[3] Abgrall, Rémi A general framework to construct schemes satisfying additional conservation relations. Application to entropy conservative and entropy dissipative schemes, J. Comput. Phys., Volume 372 (2018), pp. 640-666 | DOI | MR | Zbl

[4] Abgrall, Rémi; Bacigaluppi, Paola; Tokareva, Svetlana High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics, Comput. Math. Appl., Volume 78 (2019) no. 2, pp. 274-297 | DOI | MR | Zbl

[5] Abgrall, Rémi; Le Mélédo, Élise; Öffner, Philipp On the Connection between Residual Distribution Schemes and Flux Reconstruction (2018) (https://arxiv.org/abs/1807.01261)

[6] Abgrall, Rémi; le Mélédo, Elise; Offner, Philipp; Ranocha, Hendrik Error boundedness of correction procedure via reconstruction/flux reconstruction and the connection to residual distribution schemes, Hyperbolic Problems: Theory, Numerics, Applications (2018), p. 215 | Zbl

[7] Abgrall, Rémi; Nordström, Jan; Öffner, Philipp; Tokareva, Svetlana Analysis of the SBP-SAT stabilization for finite element methods part I: Linear problems, J. Sci. Comput., Volume 85 (2020) no. 2, pp. 1-29 | MR | Zbl

[8] Abgrall, Rémi; Nordström, Jan; Öffner, Philipp; Tokareva, Svetlana Analysis of the SBP-SAT stabilization for finite element methods part II: Entropy stability, Commun. Appl. Math. Comput. (2021), pp. 1-23

[9] Abgrall, Rémi; Öffner, Philipp; Ranocha, Hendrik Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes: Application to Structure Preserving Discretization, J. Comput. Phys. (2022), p. 110955 | DOI | MR | Zbl

[10] Abgrall, Rémi; Torlo, Davide High order asymptotic preserving deferred correction implicit-explicit schemes for kinetic models, SIAM J. Sci. Comput., Volume 42 (2020) no. 3, p. B816-B845 | DOI | MR | Zbl

[11] Bacigaluppi, Paola; Abgrall, Rémi; Tokareva, Svetlana “A Posteriori” Limited High Order and Robust Residual Distribution Schemes for Transient Simulations of Fluid Flows in Gas Dynamics (2019) (https://arxiv.org/abs/1902.07773)

[12] Burman, Erik; Ern, Alexandre Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations, Math. Comput., Volume 76 (2007) no. 259, pp. 1119-1140 | DOI | MR | Zbl

[13] Burman, Erik; Hansbo, Peter The edge stabilization method for finite elements in CFD, Numerical mathematics and advanced applications, Springer, 2004, pp. 196-203 | DOI

[14] Chen, Tianheng; Shu, Chi-Wang Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws, J. Comput. Phys., Volume 345 (2017), pp. 427-461 | DOI | MR | Zbl

[15] Christlieb, Andrew; Ong, Benjamin; Qiu, Jing-Mei Integral deferred correction methods constructed with high order Runge-Kutta integrators, Math. Comput., Volume 79 (2010) no. 270, pp. 761-783 | DOI | MR | Zbl

[16] Cohen, Gary; Ferrieres, Xavier; Pernet, Sébastien A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time domain, J. Comput. Phys., Volume 217 (2006) no. 2, pp. 340-363 | DOI | MR

[17] Cohen, Gary; Joly, Patrick; Roberts, Jean; Tordjman, Nathalie Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM J. Numer. Anal., Volume 38 (2001) | DOI | MR

[18] Douglas, Jim; Dupont, Todd Interior Penalty Procedures for Elliptic and Parabolic Galerkin Method, 58, Springer (2008), pp. 207-216 | DOI

[19] Dutt, Alok; Greengard, Leslie; Rokhlin, Vladimir Spectral deferred correction methods for ordinary differential equations, BIT Numer. Math., Volume 40 (2000) no. 2, pp. 241-266 | DOI | MR | Zbl

[20] Glaubitz, Jan; Öffner, Philipp Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points, Appl. Numer. Math., Volume 151 (2020), pp. 98-118 | DOI | MR | Zbl

[21] Glaubitz, Jan; Öffner, Philipp; Ranocha, Hendrik; Sonar, Thomas Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators, XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Springer (2016), pp. 363-375 | Zbl

[22] Gottlieb, Sigal; Ketcheson, David; Shu, Chi-Wang High order strong stability preserving time discretizations, J. Sci. Comput., Volume 38 (2009) no. 3, pp. 251-289 | DOI | MR | Zbl

[23] Han Veiga, Maria; Öffner, Philipp; Torlo, Davide DeC and ADER: Similarities, Differences and a Unified Framework, J. Sci. Comput., Volume 87 (2021) no. 1, pp. 1-35 | MR | Zbl

[24] Harten, Amiram On the symmetric form of systems of conservation laws with entropy, J. Comput. Phys., Volume 49 (1983), pp. 151-164 | DOI | MR | Zbl

[25] Huang, Juntao; Shu, Chi-Wang Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows, J. Sci. Comput., Volume 78 (2019) no. 3, pp. 1811-1839 | DOI | MR | Zbl

[26] Ketcheson, David Relaxation Runge–Kutta Methods: Conservation and Stability for Inner-Product Norms, SIAM J. Numer. Anal., Volume 57 (2019) no. 6, pp. 2850-2870 | DOI | MR | Zbl

[27] Ketcheson, David; bin Waheed, Umair A comparison of high-order explicit Runge–Kutta, extrapolation, and deferred correction methods in serial and parallel, Commun. Appl. Math. Comput. Sci., Volume 9 (2014) no. 2, pp. 175-200 | DOI | MR | Zbl

[28] Kuzmin, Dmitri; Quezada de Luna, Manuel; Ketcheson, David; Grüll, Johanna Bound-preserving Flux Limiting for High-Order Explicit Runge–Kutta Time Discretizations of Hyperbolic Conservation Laws, J. Sci. Comput., Volume 91 (2022) no. 1, p. 21 | DOI | MR | Zbl

[29] Liu, Yuan; Shu, Chi-Wang; Zhang, Mengping Strong stability preserving property of the deferred correction time discretization, J. Comput. Math. (2008), pp. 633-656 | MR | Zbl

[30] Meister, Andreas; Ortleb, Sigrun On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows, Int. J. Numer. Methods Fluids, Volume 76 (2014) no. 2, pp. 69-94 | DOI | MR | Zbl

[31] Michel, Sixtine; Torlo, Davide; Ricchiuto, Mario; Abgrall, Rémi Spectral Analysis of Continuous FEM for Hyperbolic PDEs: Influence of Approximation, Stabilization, and Time-Stepping, J. Sci. Comput., Volume 89 (2021) no. 31 | MR | Zbl

[32] Minion, Michael Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci., Volume 1 (2003) no. 3, pp. 471-500 | DOI | MR | Zbl

[33] Nüßlein, Stephan; Ranocha, Hendrik; Ketcheson, David Positivity-preserving adaptive Runge–Kutta methods, Commun. Appl. Math. Comput. Sci., Volume 16 (2021) no. 2, pp. 155-179 | DOI | MR | Zbl

[34] Öffner, Philipp Approximation and Stability properties of Numerical Methods for Hyperbolic Conservation Laws, Habilitation Thesis, University Zurich (2020)

[35] Öffner, Philipp; Glaubitz, Jan; Ranocha, Hendrik Analysis of Artificial Dissipation of Explicit and Implicit Time-Integration Methods, Int. J. Numer. Anal. Model., Volume 17 (2020) no. 3, pp. 332-349 | MR | Zbl

[36] Öffner, Philipp; Torlo, Davide Arbitrary high-order, conservative and positivity preserving Patankar-type deferred correction schemes, Appl. Numer. Math., Volume 153 (2020), pp. 15-34 | DOI | MR | Zbl

[37] Ranocha, Hendrik; Ketcheson, David Relaxation Runge–Kutta Methods for inner-product norms, https://github.com/ketch/RRK_rr, 2019

[38] Ranocha, Hendrik; Ketcheson, David Relaxation Runge-Kutta Methods for Hamiltonian Problems, J. Sci. Comput., Volume 84 (2020) no. 1, pp. 1-27 | MR | Zbl

[39] Ranocha, Hendrik; Lóczi, Lajos; Ketcheson, David General relaxation methods for initial-value problems with application to multistep schemes, Numer. Math., Volume 146 (2020) no. 4, pp. 875-906 | DOI | MR | Zbl

[40] Ranocha, Hendrik; Öffner, Philipp; Sonar, Thomas Summation-by-parts operators for correction procedure via reconstruction, J. Comput. Phys., Volume 311 (2016), pp. 299-328 | arXiv | DOI | MR | Zbl

[41] Ranocha, Hendrik; Sayyari, Mohammed; Dalcin, Lisandro; Parsani, Matteo; Ketcheson, David Relaxation Runge–Kutta Methods: Fully Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier–Stokes Equations, SIAM J. Sci. Comput., Volume 42 (2020) no. 2, p. A612-A638 | DOI | MR | Zbl

[42] Ricchiuto, Mario; Abgrall, Rémi Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case, J. Comput. Phys., Volume 229 (2010) no. 16, pp. 5653-5691 | DOI | MR | Zbl

[43] Ricchiuto, Mario; Torlo, Davide Analytical travelling vortex solutions of hyperbolic equations for validating very high order schemes (2021) (https://arxiv.org/abs/2109.10183)

[44] Torlo, Davide Hyperbolic Problems: High Order Methods and Model Order Reduction, Ph. D. Thesis, University Zurich (2020)

Cité par Sources :