Dans cet article nous exposons les étapes importantes de la preuve de la conjecture de Gelfond [6] (1968) dans un travail récent en collaboration avec Christian Mauduit [11] concernant la somme des chiffres des nombres premiers, dans l’esprit de l’exposé donné à Edimbourg dans le cadre des Journées Arithmétiques 2007.
The goal of this paper is to outline the proof of a conjecture of Gelfond [6] (1968) in a recent work in collaboration with Christian Mauduit [11] concerning the sum of digits of prime numbers, reflecting the lecture given in Edinburgh at the Journées Arithmétiques 2007.
@article{JTNB_2009__21_2_415_0, author = {Rivat, Jo\"el}, title = {On {Gelfond{\textquoteright}s} conjecture about the sum of digits of prime numbers}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {415--422}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {2}, year = {2009}, doi = {10.5802/jtnb.678}, mrnumber = {2541433}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.678/} }
TY - JOUR AU - Rivat, Joël TI - On Gelfond’s conjecture about the sum of digits of prime numbers JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 415 EP - 422 VL - 21 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.678/ DO - 10.5802/jtnb.678 LA - en ID - JTNB_2009__21_2_415_0 ER -
%0 Journal Article %A Rivat, Joël %T On Gelfond’s conjecture about the sum of digits of prime numbers %J Journal de théorie des nombres de Bordeaux %D 2009 %P 415-422 %V 21 %N 2 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.678/ %R 10.5802/jtnb.678 %G en %F JTNB_2009__21_2_415_0
Rivat, Joël. On Gelfond’s conjecture about the sum of digits of prime numbers. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 2, pp. 415-422. doi : 10.5802/jtnb.678. http://www.numdam.org/articles/10.5802/jtnb.678/
[1] C. Dartyge and G. Tenenbaum, Sommes des chiffres de multiples d’entiers. Ann. Inst. Fourier (Grenoble) 55 (2005), 2423–2474. | Numdam | MR | Zbl
[2] E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presques premiers. Mathematische Annalen 305 (1996), 571–599. | MR | Zbl
[3] E. Fouvry and C. Mauduit, Méthodes de crible et fonctions sommes des chiffres. Acta Arithmetica 77 (1996), 339–351. | MR | Zbl
[4] J. Friedlander and H. Iwaniec, The polynomial captures its primes. Ann. of Math. (2) 148 (1998), 945–1040. | MR | Zbl
[5] J. Friedlander and H. Iwaniec, Asymptotic sieve for primes. Ann. of Math. (2) 148 (1998), 1041–1065. | MR | Zbl
[6] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arithmetica 13 (1968), 259–265. | MR | Zbl
[7] G. Harman, Primes with preassigned digits. Acta Arith. 125 (2006), 179–185. | MR
[8] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 34 (1982), 1365–1377. | MR | Zbl
[9] D. R. Heath-Brown, Primes represented by . Acta Math. 186 (2001), 1–84. | MR | Zbl
[10] K. Mahler, The Spectrum of an Array and Its Application to the Study of the Translation Properties of a Simple Class of Arithmetical Functions. II: On the Translation Properties of a Simple Class of Arithmetical Functions. J. of Math. Phys. Mass. Inst. Techn. 6 (1927), 158–163.
[11] C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers. Annals of Mathematics, à paraître.
[12] I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form . Mat. Sbornik N.S. 33(75) (1953), 559–566. | MR | Zbl
[13] W. Sierpiński, Sur les nombres premiers ayant des chiffres initiaux et finals donnés. Acta Arith. 5 (1959), 265–266. | MR | Zbl
[14] R. C. Vaughan, An elementary method in prime number theory. Acta Arithmetica 37 (1980), 111–115. | MR | Zbl
[15] I. M. Vinogradov, The method of Trigonometrical Sums in the Theory of Numbers, translated from the Russian, revised and annotated by K.F. Roth and A. Davenport. Interscience, London, 1954. | MR | Zbl
[16] D. Wolke, Primes with preassigned digits. Acta Arith. 119 (2005), 201–209. | MR | Zbl
Cité par Sources :