Nous présentons un ensemble de conjectures imbriquées qui peuvent être considérées comme des analogues pour l’addition restreinte des théorèmes classiques dûs à Kneser, Kemperman et Scherk. Les connections avec le théorème de Cauchy-Davenport, la conjecture d’Erdős-Heilbronn et la méthode polynomiale d’Alon-Nathanson-Ruzsa sont étudiées.
Cet article ne suppose pas d’expertise de la part du lecteur et peut servir d’introduction au sujet.
We present a system of interrelated conjectures which can be considered as restricted addition counterparts of classical theorems due to Kneser, Kemperman, and Scherk. Connections with the theorem of Cauchy-Davenport, conjecture of Erdős-Heilbronn, and polynomial method of Alon-Nathanson-Ruzsa are discussed.
The paper assumes no expertise from the reader and can serve as an introduction to the subject.
@article{JTNB_2005__17_1_181_0, author = {Lev, Vsevolod F.}, title = {Restricted set addition in {Abelian} groups: results and conjectures}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {181--193}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.485}, zbl = {1162.11318}, mrnumber = {2152219}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.485/} }
TY - JOUR AU - Lev, Vsevolod F. TI - Restricted set addition in Abelian groups: results and conjectures JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 181 EP - 193 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.485/ DO - 10.5802/jtnb.485 LA - en ID - JTNB_2005__17_1_181_0 ER -
%0 Journal Article %A Lev, Vsevolod F. %T Restricted set addition in Abelian groups: results and conjectures %J Journal de théorie des nombres de Bordeaux %D 2005 %P 181-193 %V 17 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.485/ %R 10.5802/jtnb.485 %G en %F JTNB_2005__17_1_181_0
Lev, Vsevolod F. Restricted set addition in Abelian groups: results and conjectures. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 181-193. doi : 10.5802/jtnb.485. http://www.numdam.org/articles/10.5802/jtnb.485/
[A99] N. Alon, Combinatorial Nullstellensatz. Recent trends in combinatorics (Mátraháza, 1995). Combin. Probab. Comput. 8 (1–2) (1999), 7–29. | MR | Zbl
[ANR95] N. Alon, M.B. Nathanson, I.Z. Ruzsa, Adding distinct congruence classes modulo a prime. American Math. Monthly 102 (1995), 250–255. | MR | Zbl
[ANR96] N. Alon, M.B. Nathanson, I.Z. Ruzsa, The polynomial method and resricted sums of congruence classes. J. Number theory 56 (1996), 404–417. | MR | Zbl
[C13] A. Cauchy, Recherches sur les nombres. Jour. Ecole polytechn. 9 (1813), 99–116.
[D35] H. Davenport, On the addition of residue classes. J. London Math. Soc. 10 (1935), 30–32. | JFM | Zbl
[D47] —, A historical note. J. London Math. Soc. 22 (1947), 100–101. | MR | Zbl
[DH94] J.A. Dias da Silva, Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory. Bull. London Math. Soc. 26 (1994), 140–146. | MR | Zbl
[EG80] P. Erdős, R. Graham, Old and new problems and results in combinatorial number theory. L’Enseignement Mathématique, Geneva (1980). | MR | Zbl
[FLP99] G. Freiman, L. Low, J. Pitman, Sumsets with distinct summands and the conjecture of Erdős-Heilbronn on sums of residues. Astérisque 258 (1999), 163–172. | Numdam | MR | Zbl
[Ke56] J.H.B. Kemperman, On complexes in a semiroup. Indag. Math. 18 (1956), 247–254. | MR | Zbl
[Ke60] —, On small sumsets in an abelian group. Acta Math. 103 (1960), 63–88. | MR | Zbl
[Kn53] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen. Math. Z. 58 (1953), 459–484. | MR | Zbl
[Kn55] —, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen. Math. Z. 61 (1955), 429–434. | MR | Zbl
[L00a] V.F. Lev, Restricted set addition in groups, I. The classical setting. J.London Math. Soc. (2) 62 (2000), 27–40. | MR | Zbl
[L00b] —, Restricted set addition in groups, II. A generalization of the Erdős-Heilbronn conjecture. Electron. J. Combin. 7 (1) (2000), Research Paper 4, 10 pp. (electronic). | MR | Zbl
[L01] —, Restricted set addition in groups, III. Integer sumsets with generic restrictions. Periodica Math. Hungarica 42 (2001), 89–98. | MR | Zbl
[Ma65] H. B. Mann, Addition Theorems: The Addition Theorems of Group Theory and Number Theory. Interscience Publishers, a division of John Wiley and Sons, New York, 1965. | MR | Zbl
[Mo51] L. Moser, Problem 4466. American Math. Monthly 58 (10) (1951), 703.
[S55] P. Scherk, Distinct elements in a set of sums (solution to Problem 4466). American Math. Monthly 62 (1) (1955), 46–47.
Cité par Sources :