Sumsets with distinct summands and the Erdős-Heilbronn conjecture on sums of residues
Structure theory of set addition, Astérisque, no. 258 (1999), pp. 163-172.
@incollection{AST_1999__258__163_0,
     author = {Freiman, Gregory A. and Low, Lewis and Pitman, Jane},
     title = {Sumsets with distinct summands and the {Erd\H{o}s-Heilbronn} conjecture on sums of residues},
     booktitle = {Structure theory of set addition},
     editor = {Deshouilliers Jean-Marc and Landreau Bernard and Yudin Alexander A.},
     series = {Ast\'erisque},
     pages = {163--172},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {258},
     year = {1999},
     mrnumber = {1701194},
     zbl = {0948.11008},
     language = {en},
     url = {http://www.numdam.org/item/AST_1999__258__163_0/}
}
TY  - CHAP
AU  - Freiman, Gregory A.
AU  - Low, Lewis
AU  - Pitman, Jane
TI  - Sumsets with distinct summands and the Erdős-Heilbronn conjecture on sums of residues
BT  - Structure theory of set addition
AU  - Collectif
ED  - Deshouilliers Jean-Marc
ED  - Landreau Bernard
ED  - Yudin Alexander A.
T3  - Astérisque
PY  - 1999
SP  - 163
EP  - 172
IS  - 258
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1999__258__163_0/
LA  - en
ID  - AST_1999__258__163_0
ER  - 
%0 Book Section
%A Freiman, Gregory A.
%A Low, Lewis
%A Pitman, Jane
%T Sumsets with distinct summands and the Erdős-Heilbronn conjecture on sums of residues
%B Structure theory of set addition
%A Collectif
%E Deshouilliers Jean-Marc
%E Landreau Bernard
%E Yudin Alexander A.
%S Astérisque
%D 1999
%P 163-172
%N 258
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1999__258__163_0/
%G en
%F AST_1999__258__163_0
Freiman, Gregory A.; Low, Lewis; Pitman, Jane. Sumsets with distinct summands and the Erdős-Heilbronn conjecture on sums of residues, dans Structure theory of set addition, Astérisque, no. 258 (1999), pp. 163-172. http://www.numdam.org/item/AST_1999__258__163_0/

[1] Alon N., Nathanson M. B. and Ruzsa I. Z., Adding distinct congruence classes modulo a prime, Amer. Math. Monthly, 102, 1995, 250-255. | DOI | MR | Zbl

[2] Alon N., Nathanson M. B., and Ruzsa I. Z., The polynomial method and restricted sums of congruence classes, J. Number Theory, 56, 1996, 404-417. | DOI | MR | Zbl

[3] Davenport H., On the addition of residue classes, J. London Math. Soc., 10, 1935, 30-32. | DOI | JFM

[4] Dias Da Silva J. A. and Hamidoune Y. O., Cyclic spaces for Grassman derivatives and additive theory, Bull. London Math. Soc., 26, 1994, 140-146. | DOI | MR | Zbl

[5] Erdös P. and Graham R. L., Old and new results in combinatorial number theory, Monographic 28 de L'Enseignement Math. Gen., 1980. | MR | Zbl

[6] Freiman G. A., Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs, vol. 37, Amer. Math. Soc., Providence, R.I., 1973. | MR | Zbl

[7] Mansfield R., How many slopes in a polygon, Israel J. Math., 39, 1981, 265-272. | DOI | MR | Zbl

[8] Nathanson M. B., Ballot numbers, alternating products and the Erdös-Heilbronn conjecture, in Graham, R.L., and Nestril, J., (editors), The Mathematics of Paul Erdös, Springer, Heidelberg, 1994. | MR | Zbl

[9] Nathanson M. B., Additive Number Theory 2: Inverse theorems and the geometry of sumsets, Graduate Texts in Mathematics, Springer, New York, 1996. | DOI | MR | Zbl

[10] Pyber L., Personal communication, 1991.

[11] Rödset O. J., Sums of distinct residues mod p, Acta Arith., 65, 1993, 181-184. | DOI | EuDML | MR | Zbl