Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations
[Analyse spectrale uniforme des équations de Fokker-Planck discrète, fractionnaire et classique]
Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 389-433.

Dans cet article, nous nous intéressons à l’analyse spectrale et au comportement asymptotique en temps long des semi-groupes associés aux équations de Fokker-Planck discrète, fractionnaire et classique dans des régimes où les opérateurs correspondants sont proches. Nous traitons successivement les modèles de Fokker-Planck discret et classique, puis fractionnaire et classique et enfin discret et fractionnaire. Dans chaque cas, nous démontrons des estimations spectrales uniformes en utilisant des arguments de perturbation et/ou d’élargissement.

In this paper, we investigate the spectral analysis and long time asymptotic convergence of semigroups associated to discrete, fractional and classical Fokker-Planck equations in some regime where the corresponding operators are close. We successively deal with the discrete and the classical Fokker-Planck model, the fractional and the classical Fokker-Planck model and finally the discrete and the fractional Fokker-Planck model. In each case, we prove uniform spectral estimates using perturbation and/or enlargement arguments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.46
Classification : 47G20, 35B40, 35Q84
Keywords: Fokker-Planck equation, fractional Laplacian, spectral gap, exponential rate of convergence, long-time asymptotic, semigroup, dissipativity
Mot clés : Équation de Fokker-Planck, laplacien fractionnaire, trou spectral, taux de convergence exponentiel, asymptotique en temps long, semi-groupe, dissipativité
Mischler, Stéphane 1 ; Tristani, Isabelle 2

1 Université Paris-Dauphine, Institut Universitaire de France (IUF), PSL Research University, CNRS, UMR [7534], CEREMADE, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
2 Université Paris-Dauphine, PSL Research University, CNRS, UMR [7534], CEREMADE, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France.
@article{JEP_2017__4__389_0,
     author = {Mischler, St\'ephane and Tristani, Isabelle},
     title = {Uniform semigroup spectral analysis of the~discrete, fractional and classical {Fokker-Planck} equations},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {389--433},
     publisher = {Ecole polytechnique},
     volume = {4},
     year = {2017},
     doi = {10.5802/jep.46},
     mrnumber = {3623358},
     zbl = {06754331},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.46/}
}
TY  - JOUR
AU  - Mischler, Stéphane
AU  - Tristani, Isabelle
TI  - Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2017
SP  - 389
EP  - 433
VL  - 4
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.46/
DO  - 10.5802/jep.46
LA  - en
ID  - JEP_2017__4__389_0
ER  - 
%0 Journal Article
%A Mischler, Stéphane
%A Tristani, Isabelle
%T Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations
%J Journal de l’École polytechnique — Mathématiques
%D 2017
%P 389-433
%V 4
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.46/
%R 10.5802/jep.46
%G en
%F JEP_2017__4__389_0
Mischler, Stéphane; Tristani, Isabelle. Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations. Journal de l’École polytechnique — Mathématiques, Tome 4 (2017), pp. 389-433. doi : 10.5802/jep.46. http://www.numdam.org/articles/10.5802/jep.46/

[1] Carrapatoso, K.; Mischler, S. Uniqueness and long time asymptotic for the parabolic-parabolic Keller-Segel equation (2016) (to appear in Comm. Partial Differential Equations, hal-01011361) | Zbl

[2] Egaña Fernández, G.; Mischler, S. Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case, Arch. Rational Mech. Anal., Volume 220 (2016) no. 3, pp. 1159-1194 | DOI | MR | Zbl

[3] Escobedo, M.; Mischler, S.; Rodriguez Ricard, M. On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99-125 | DOI | Numdam | MR | Zbl

[4] Gentil, I.; Imbert, C. The Lévy-Fokker-Planck equation: Φ-entropies and convergence to equilibrium, Asymptot. Anal., Volume 59 (2008) no. 3-4, pp. 125-138 | Zbl

[5] Gualdani, M. P.; Mischler, S.; Mouhot, C. Factorization of non-symmetric operators and exponential H-Theorem (2013) (hal-00495786) | Zbl

[6] Kavian, O.; Mischler, S. The Fokker-Planck equation with subcritical confinement force (2015) (hal-01241680)

[7] Mischler, S. Semigroups in Banach spaces, factorisation and spectral analysis (work in progress)

[8] Mischler, S.; Mouhot, C. Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres, Comm. Math. Phys., Volume 288 (2009) no. 2, pp. 431-502 | DOI | MR | Zbl

[9] Mischler, S.; Mouhot, C. Exponential stability of slowly decaying solutions to the kinetic-Fokker-Planck equation, Arch. Rational Mech. Anal., Volume 221 (2016) no. 2, pp. 677-723 | DOI | MR | Zbl

[10] Mischler, S.; Quiñinao, C.; Touboul, J. On a kinetic Fitzhugh-Nagumo model of neuronal network, Comm. Math. Phys., Volume 342 (2016) no. 3, pp. 1001-1042 | DOI | MR | Zbl

[11] Mischler, S.; Scher, J. Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 33 (2016) no. 3, pp. 849-898 | DOI | MR | Zbl

[12] Mischler, S.; Weng, Q. On a linear runs and tumbles equation, Kinet. and Relat. Mod., Volume 10 (2017) no. 3, pp. 799-822 (hal-01272429) | DOI | MR | Zbl

[13] Mouhot, C. Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials, Comm. Math. Phys., Volume 261 (2006) no. 3, pp. 629-672 | DOI | MR | Zbl

[14] Tristani, I. Fractional Fokker-Planck equation, Commun. Math. Sci., Volume 13 (2015) no. 5, pp. 1243-1260 | DOI | MR | Zbl

[15] Tristani, I. Boltzmann equation for granular media with thermal force in a weakly inhomogeneous setting, J. Funct. Anal., Volume 270 (2016) no. 5, pp. 1922-1970 | DOI | MR | Zbl

[16] Voigt, J. A perturbation theorem for the essential spectral radius of strongly continuous semigroups, Monatsh. Math., Volume 90 (1980) no. 2, pp. 153-161 | DOI | MR | Zbl

Cité par Sources :