In these notes for the proceedings of the “Journée Équations aux Dérivées Partielles”, we survey some of the recent progress in and the interplay of unique continuation, approximation and some related nonlocal inverse problems. In particular, we discuss the qualitative and quantitative global unique continuation properties of the fractional Laplacian and its Runge approximation properties. We explain how this leads to surprising results on the inverse problems for the associated operators.
@incollection{JEDP_2018____A8_0, author = {R\"uland, Angkana}, title = {Unique {Continuation,} {Runge} {Approximation} and the {Fractional} {Calder\'on} {Problem}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:8}, pages = {1--10}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.668}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jedp.668/} }
TY - JOUR AU - Rüland, Angkana TI - Unique Continuation, Runge Approximation and the Fractional Calderón Problem JO - Journées équations aux dérivées partielles N1 - talk:8 PY - 2018 SP - 1 EP - 10 PB - Groupement de recherche 2434 du CNRS UR - http://www.numdam.org/articles/10.5802/jedp.668/ DO - 10.5802/jedp.668 LA - en ID - JEDP_2018____A8_0 ER -
%0 Journal Article %A Rüland, Angkana %T Unique Continuation, Runge Approximation and the Fractional Calderón Problem %J Journées équations aux dérivées partielles %Z talk:8 %D 2018 %P 1-10 %I Groupement de recherche 2434 du CNRS %U http://www.numdam.org/articles/10.5802/jedp.668/ %R 10.5802/jedp.668 %G en %F JEDP_2018____A8_0
Rüland, Angkana. Unique Continuation, Runge Approximation and the Fractional Calderón Problem. Journées équations aux dérivées partielles (2018), Exposé no. 8, 10 p. doi : 10.5802/jedp.668. http://www.numdam.org/articles/10.5802/jedp.668/
[1] Convex domains and unique continuation at the boundary, Rev. Mat. Iberoam., Volume 11 (1995) no. 3, pp. 513-525 | DOI | MR | Zbl
[2] Reconstruction of the potential from partial Cauchy data for the Schrödinger equation, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 169-183 | Zbl
[3] Inverse problem for fractional-Laplacian with lower order non-local perturbations (2018) (https://arxiv.org/abs/1810.03567)
[4] Approximation by solutions of partial differential equations, Am. J. Math., Volume 84 (1962) no. 1, pp. 134-160 | DOI | MR
[5] Functional analysis and partial differential equations. II, Math. Ann., Volume 145 (1962) no. 2, pp. 81-226 | DOI | MR
[6] An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | MR
[7] Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators (2017) (https://arxiv.org/abs/1712.00937)
[8] Determining a fractional Helmholtz system with unknown source and medium parameter (2018) (https://arxiv.org/abs/1803.09538)
[9] Local density of Caputo-stationary functions of any order (2018) (https://arxiv.org/abs/1809.04005)
[10] Local density of solutions of time and space fractional equations (2018) (https://arxiv.org/abs/1810.08448)
[11] The Calderón problem for the fractional Schrödinger equation with drift (2018) (https://arxiv.org/abs/1810.04211)
[12] Inverse problems for a fractional conductivity equation (2018) (https://arxiv.org/abs/1810.06319, to appear in Nonlinear Anal.)
[13] All functions are locally -harmonic up to a small error, J. Eur. Math. Soc., Volume 19 (2017) no. 4, pp. 957-966 | DOI | MR | Zbl
[14] Local approximation of arbitrary functions by solutions of nonlocal equations, J. Geom. Anal., Volume 29 (2019) no. 2, pp. 1428-1455 | DOI | MR | Zbl
[15] Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | MR | Zbl
[16] Approximation theorems for parabolic equations and movement of local hot spots (2017) (https://arxiv.org/abs/1710.03782, to appear in Duke Math. J.)
[17] Minimal surfaces with micro-oscillations, J. Differ. Equations, Volume 265 (2018) no. 8, pp. 3339-3344
[18] Knots and links in steady solutions of the Euler equation, Ann. Math., Volume 175 (2012) no. 1, pp. 345-367 | DOI | MR | Zbl
[19] Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equations, Volume 39 (2014) no. 2, pp. 354-397 | DOI | MR
[20] Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5827-5867 | DOI
[21] The Calderón problem for variable coefficients nonlocal elliptic operators, Commun. Partial Differ. Equations, Volume 42 (2017) no. 12, pp. 1923-1961 | DOI
[22] Uniqueness and reconstruction for the fractional Calderón problem with a single measurement (2018) (https://arxiv.org/abs/1801.04449)
[23] The Calderón problem for the fractional Schrödinger equation (2016) (https://arxiv.org/abs/1609.09248, to appear in Anal. PDE)
[24] Monotonicity-based inversion of the fractional Schrödinger equation (2017) (https://arxiv.org/abs/1711.05641)
[25] A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl., Volume 31 (2015) no. 3, 035003, 40 pages | MR | Zbl
[26] The classical Harnack inequality fails for non-local operators (2007) (SFB preprint)
[27] A new formulation of Harnack’s inequality for nonlocal operators, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 11-12, pp. 637-640 | DOI | MR
[28] The Calderón problem with partial data on manifolds and applications, Anal. PDE, Volume 6 (2003) no. 8, pp. 2003-2048 | DOI
[29] Recent progress in the Calderón problem with partial data, Inverse problems and applications (Contemporary Mathematics), Volume 615, American Mathematical Society, 2014, pp. 193-222 | Zbl
[30] The variable coefficient thin obstacle problem: Carleman inequalities, Adv. Math., Volume 301 (2016), pp. 820-866 | DOI | MR
[31] Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | DOI | MR | Zbl
[32] Determining conductivity by boundary measurements II. Interior results, Commun. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 643-667 | DOI | MR | Zbl
[33] Global uniqueness for the semilinear fractional Schrödinger equation (2017) (https://arxiv.org/abs/1710.07404)
[34] A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Commun. Pure Appl. Math., Volume 9 (1956) no. 4, pp. 747-766 | MR | Zbl
[35] Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Volume 6 (1956), pp. 271-355 | DOI | Numdam | Zbl
[36] Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000 | Zbl
[37] Intégrales de Riemann–Liouville et potentiels, Acta Litt. Sci. Szeged, Volume 9 (1938), pp. 1-42 | Zbl
[38] Unique continuation for fractional Schrödinger equations with rough potentials, Commun. Partial Differ. Equations, Volume 40 (2015) no. 1, pp. 77-114 | DOI
[39] Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms (2017) (https://arxiv.org/abs/1708.04285, to appear in Rev. Mat. Iberoam.)
[40] The fractional Calderón problem: Low regularity and stability (2017) (https://arxiv.org/abs/1708.06294, to appear in Nonlinear Anal.)
[41] Quantitative approximation properties for the fractional heat equation (2017) (https://arxiv.org/abs/1708.06300, to appear in Math. Control Relat. Fields)
[42] Quantitative Runge approximation and inverse problems, Int. Math. Res. Not. (2017), rnx301 | DOI
[43] Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data (2018) (https://arxiv.org/abs/1805.00866, to appear in Inverse Probl. Imaging)
[44] Zur Theorie der eindeutigen analytischer Funktionen, Acta Math., Volume 6 (1885), pp. 229-244 | DOI | Zbl
[45] Unique continuation for fractional Schrödinger operators in three and higher dimensions, Proc. Am. Math. Soc., Volume 143 (2015) no. 4, pp. 1661-1664 | Zbl
[46] The nodal set of solutions to some elliptic problems: singular nonlinearities (2018) (https://arxiv.org/abs/1803.06637)
[47] The nodal set of solutions to some elliptic problems: sublinear equations, and unstable two-phase membrane problem (2018) (https://arxiv.org/abs/1802.02089)
[48] Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl., Volume 75 (1996) no. 4, pp. 367-408 | MR
[49] Unique continuation problems for partial differential equations, Geometric methods in inverse problems and PDE control (The IMA Volumes in Mathematics and its Applications), Volume 137, Springer, 2004, pp. 239-255 | DOI | MR | Zbl
[50] Electrical impedance tomography and Calderón’s problem, Inverse Probl., Volume 25 (2009) no. 12, 123011, 39 pages | Zbl
[51] Antilocality and a Reeh–Schlieder theorem on manifolds, Lett. Math. Phys., Volume 28 (1993) no. 2, pp. 143-154 | DOI | MR | Zbl
[52] Unique continuation for fractional orders of elliptic equations, Ann. PDE, Volume 3 (2017) no. 2, 16, 21 pages | MR | Zbl
[53] Controllability and observability of partial differential equations: some results and open problems, Handbook of differential equations: Evolutionary equations, Volume 3, Elsevier, 2007, pp. 527-621 | Zbl
Cité par Sources :