Given a tilting object of the derived category of an abelian category of finite global dimension, we give (under suitable finiteness conditions) a bound for the global dimension of its endomorphism ring.
Révisé le :
Accepté le :
Publié le :
@article{CRMATH_2020__358_5_563_0, author = {Keller, Bernhard and Krause, Henning}, title = {Tilting preserves finite global dimension}, journal = {Comptes Rendus. Math\'ematique}, pages = {563--570}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.72}, language = {en}, url = {http://www.numdam.org/articles/10.5802/crmath.72/} }
TY - JOUR AU - Keller, Bernhard AU - Krause, Henning TI - Tilting preserves finite global dimension JO - Comptes Rendus. Mathématique PY - 2020 SP - 563 EP - 570 VL - 358 IS - 5 PB - Académie des sciences, Paris UR - http://www.numdam.org/articles/10.5802/crmath.72/ DO - 10.5802/crmath.72 LA - en ID - CRMATH_2020__358_5_563_0 ER -
%0 Journal Article %A Keller, Bernhard %A Krause, Henning %T Tilting preserves finite global dimension %J Comptes Rendus. Mathématique %D 2020 %P 563-570 %V 358 %N 5 %I Académie des sciences, Paris %U http://www.numdam.org/articles/10.5802/crmath.72/ %R 10.5802/crmath.72 %G en %F CRMATH_2020__358_5_563_0
Keller, Bernhard; Krause, Henning. Tilting preserves finite global dimension. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 563-570. doi : 10.5802/crmath.72. http://www.numdam.org/articles/10.5802/crmath.72/
[1] Handbook of tilting theory, London Mathematical Society Lecture Note Series, 332, Cambridge University Press, 2007 | MR | Zbl
[2] Tilting sheaves in representation theory of algebras, Manuscr. Math., Volume 60 (1988) no. 3, pp. 323-347 | DOI | MR | Zbl
[3] Coherent sheaves on and problems in linear algebra, Funkts. Anal. Prilozh., Volume 12 (1978) no. 3, pp. 68-69 | MR
[4] Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) (Astérisque), Volume 100, Société Mathématique de France, 1982, pp. 5-171 | Numdam | MR | Zbl
[5] Cohomologie Etale. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4) (Dold, A.; Eckmann, B., eds.) (Lecture Notes in Mathematics), Volume 305, Springer, 1973 (Avec la collaboration de J.-F. Boutot, A. Grothendieck, L. Illusie et J.-L. Verdier)
[6] Des catégories abéliennes, Bull. Soc. Math. Fr., Volume 90 (1962), pp. 323-448 | DOI | Numdam | Zbl
[7] Representations of finite-dimensional algebras, Encyclopaedia of Mathematical Sciences, 73, Springer, 1992, pp. 1-177 (With a chapter by B. Keller) | MR
[8] A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) (Lecture Notes in Mathematics), Volume 1273, Springer, 1987, pp. 265-297 | DOI | MR | Zbl
[9] Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University Press, 1988 | MR | Zbl
[10] Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, Proceedings, Paris 1987–1988 (39ème Année) (Malliavin, Marie-Paule, ed.) (Lecture Notes in Mathematics), Volume 1404, Springer (1989), pp. 108-126 | DOI | MR | Zbl
[11] On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math., Volume 92 (1988) no. 3, pp. 479-508 | DOI | MR | Zbl
[12] Categories and sheaves, Grundlehren der Mathematischen Wissenschaften, 332, Springer, 2006 | MR | Zbl
[13] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl
[14] Derived categories and their uses, Handbook of algebra. Vol. 1, Volume 1, North-Holland, 1996, pp. 671-701 | DOI | MR | Zbl
[15] Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra, Volume 190 (2004) no. 1-3, pp. 177-196 | DOI | MR | Zbl
[16] Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not., Volume 2013 (2013) no. 5, pp. 1028-1078 | DOI | MR | Zbl
[17] Sous les catégories dérivées, C. R. Math. Acad. Sci. Paris, Volume 305 (1987) no. 6, pp. 225-228 | Zbl
[18] The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR | Zbl
[19] Hereditary categories, Handbook of tilting theory (Hügel, Lidia Angeleri, ed.) (London Mathematical Society Lecture Note Series), Volume 332, Cambridge University Press, 2007, pp. 105-146 | DOI | MR
[20] Local rings, Interscience Tracts in Pure and Applied Mathematics, 13, Interscience Publishers; John Wiley & Sons, 1962 | MR | Zbl
[21] Morita theory for derived categories, J. Lond. Math. Soc., Volume 39 (1989) no. 3, pp. 436-456 | DOI | MR | Zbl
[22] Derived equivalences as derived functors, J. Lond. Math. Soc., Volume 43 (1991) no. 1, pp. 37-48 | DOI | MR | Zbl
Cité par Sources :