Analyse complexe
Inequalities Involving q-Analogue of Multiple Psi Functions
[Inégalités impliquant des q-analogues des fonction psi multiples]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 327-332.

La dérivée logarithmique de la fonction gamma multiple est connue comme la fonction psi multiple. Dans ce travail, des q-analogues de fonctions psi multiples d’ordre n ont été considérés. Des propriétés de sous-additivité, superadditivité et convexité des dérivées d’ordre supérieur de ces fonctions en découlent. Certaines inégalités apparentées sont également obtenues pour ces fonctions et leur rapports.

Logarithmic derivative of the multiple gamma function is known as the multiple psi function. In this work q-analogue of multiple psi functions of order n have been considered. Subadditive, superadditive and convexity properties of higher order derivatives of these functions are derived. Some related inequalities for these functions and their ratios are also obtained.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.44
Classification : 33B15, 26D07, 26D15
Das, Sourav 1

1 Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand-831014, India
@article{CRMATH_2020__358_3_327_0,
     author = {Das, Sourav},
     title = {Inequalities {Involving} $q${-Analogue} of {Multiple} {Psi} {Functions}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {327--332},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.44},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.44/}
}
TY  - JOUR
AU  - Das, Sourav
TI  - Inequalities Involving $q$-Analogue of Multiple Psi Functions
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 327
EP  - 332
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.44/
DO  - 10.5802/crmath.44
LA  - en
ID  - CRMATH_2020__358_3_327_0
ER  - 
%0 Journal Article
%A Das, Sourav
%T Inequalities Involving $q$-Analogue of Multiple Psi Functions
%J Comptes Rendus. Mathématique
%D 2020
%P 327-332
%V 358
%N 3
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.44/
%R 10.5802/crmath.44
%G en
%F CRMATH_2020__358_3_327_0
Das, Sourav. Inequalities Involving $q$-Analogue of Multiple Psi Functions. Comptes Rendus. Mathématique, Tome 358 (2020) no. 3, pp. 327-332. doi : 10.5802/crmath.44. http://www.numdam.org/articles/10.5802/crmath.44/

[1] Alzer, Horst Sharp inequalities for the diagramma and polygamma functions, Forum Math., Volume 16 (2004) no. 2, pp. 181-221 | Zbl

[2] Alzer, Horst Sub- and superadditive properties of Euler’s gamma function, Proc. Am. Math. Soc., Volume 135 (2007) no. 11, pp. 3641-3648 | DOI | MR | Zbl

[3] Alzer, Horst; Ruscheweyh, Stephan A subadditive property of the gamma function, J. Math. Anal. Appl., Volume 285 (2003) no. 2, pp. 564-577 | DOI | MR | Zbl

[4] Barnes, Ernest W. The theory of the G-function, Q. J. Math, Volume 31 (1899), pp. 264-314 | Zbl

[5] Barnes, Ernest W. On the theory of the multiple Gamma function, Cambr. Trans., Volume 19 (1904), pp. 374-439 | Zbl

[6] Batir, Necdet Monotonicity properties of q-digamma and q-trigamma functions, J. Approx. Theory, Volume 192 (2015), pp. 336-346 | DOI | MR | Zbl

[7] Choi, Junesang Multiple gamma functions and their applications, Analytic number theory, approximation theory, and special functions, Springer, 2014, pp. 93-129 | DOI | Zbl

[8] Chung, Won Sang; Kim, Taekyun; Mansour, Toufik The q-deformed gamma function and q-deformed polygamma function, Bull. Korean Math. Soc., Volume 51 (2014) no. 4, pp. 1155-1161 | DOI | MR | Zbl

[9] Guo, Bai-Ni; Qi, Feng; Luo, Qiu-Ming The additivity of polygamma functions, Filomat, Volume 29 (2015) no. 5, pp. 1063-1066 | MR | Zbl

[10] Jackson, Frank H. On q-functions and a certain difference operator, Trans. R. Soc. Edinb., Volume 46 (1908) no. 2, pp. 253-281 | DOI

[11] Jackson, Frank H. On a q-definite integrals, Quart. J., Volume 41 (1910), pp. 193-203 | Zbl

[12] Mansour, Toufik; Shabani, Armend Sh. Some inequalities for the q-digamma function, JIPAM, J. Inequal. Pure Appl. Math., Volume 10 (2009) no. 1, 12, 8 pages | MR | Zbl

[13] Ruijsenaars, Simon N. M. On Barnes’ multiple zeta and gamma functions, Adv. Math., Volume 156 (2000) no. 1, pp. 107-132 | DOI | MR | Zbl

[14] Srivastava, H. M.; Choi, Junesang Zeta and q-Zeta functions and associated series and integrals, Elsevier, 2012 | Zbl

[15] Ueno, Kimio; Nishizawa, Michitomo The multiple gamma function and its q-analogue, Quantum groups and quantum spaces (Warsaw, 1995) (Banach Center Publications), Volume 40, Polish Academy of Sciences, 1995, pp. 429-441 | Zbl

[16] Vignéras, Marie-France L’équation fonctionnelle de la fonction zeta de Selberg de groupe modulaire PSL(2;Z), Journees arithmétiques de Luminy (1978) (Astérisque), Volume 61, Société Mathématique de France, 1979, pp. 235-249 | Numdam | Zbl

Cité par Sources :